Home
Class 11
MATHS
If veca and vecb are two non collinear v...

If `veca and vecb` are two non collinear vectors `and `vecuveca0(veca.vecb)vecb and vecv=vecaxxvecb` then `|vecv|` is (A) `|vecu|` (B) `|vecu|+|vecu.vecb|` (C) `|vecu|+|vecu.veca|` (D) none of these

A

`|vecu|`

B

`|vecu|+ |vecu. Veca|`

C

`|vecu| + |vecu.vecb|`

D

`|vecu|+ vecu. (veca + vecb)`

Text Solution

Verified by Experts

The correct Answer is:
a,c

we have
`vecv= vecaxxvecb= |veca||vecb| sin theta hatn = sin theta hatn`
where `veca and vecb` are unit vectors. Therefore,
`|vecv|= sin theta`
Now, `vecu = veca - (veca.vecb)vecb`
`= veca -vecb cos theta ( " where " veca. Vecb = cos theta)`
`|vecu|^(2) = | veca-vecb cos theta|^(2)`
` 1 + cos^(2) theta -2 cos theta . cos theta`
` =1 - cos^(2) theta = sin^(2) theta = |v|^(2)`
` Rightarrow |vecu|= |vecv|`
Also , `vecu . vecb = veca. vecb - (veca.vecb) (vecb.vecb)`
` = veca.vecb-veca.vecb=0`
`|vecu.vecb|=0`
`|vecv|=|vecu|+ |vecu.vecb|` is also correct.
Promotional Banner

Topper's Solved these Questions

  • DIFFERENT PRODUCTS OF VECTORS AND THEIR GEOMETRICAL APPLICATIONS

    CENGAGE|Exercise JEE Previous Year (Single Question)|28 Videos
  • CONIC SECTIONS

    CENGAGE|Exercise Solved Examples And Exercises|1316 Videos
  • LIMITS AND DERIVATIVES

    CENGAGE|Exercise Solved Examples And Exercises|320 Videos

Similar Questions

Explore conceptually related problems

If veca and vecb are two non collinear vectors and vecu=veca-(veca.vecb)vecb and vecv=vecaxxvecb then |vecv| is (A) |vecu| (B) |vecu|+|vecu.vecb| (C) |vecu|+|vecu.veca| (D) none of these

Let veca and vecb be two non-collinear unit vectors. If vecu=veca-(veca.vecb)vecb and vec=vecaxxvecb , then |vecv| is

If veca, vecb, vecc are non coplanar vectors such that vecbxxvecc=veca, vecaxxvecb=vecc aned veccxxveca=vecb then (A) |veca|+|vecb|+|vecc|=3 (B) |vecb|=1 (C) |veca|=1 (D) none of these

If veca and vecb be two non-collinear unit vectors such that vecaxx(vecaxxvecb)=1/2vecb then find the angle between veca and vecb .

If veca and vecb be two non-collinear unit vectors such that vecaxx(vecaxxvecb)=1/2vecb then find the angle between veca and vecb .

If veca and vecb are two non collinear unit vectors and iveca+vecbi=sqrt(3) then find the value of (veca-vecb).(2veca+vecb)

If veca and vecb are non - zero vectors such that |veca + vecb| = |veca - 2vecb| then

veca,vecb,vecc are non zero vectors. If vecaxxvecb=vecaxxvecc and veca.vecb=veca.vecc then show that vecb=vecc .

If veca and vecb are two non collinear unit vectors and |veca+vecb|= sqrt3 , then find the value of (veca- vecb)*(2veca+ vecb)