Home
Class 11
PHYSICS
The equation of progressive wave is y=0....

The equation of progressive wave is `y=0.01sin(100t-x)` where `x,y` are in meter and t in second, then
`(a)` Velocity of wave is `50m//s`
`(b)` Maximum velocity of particle is `1m//s`
`(c )` Wave length of wave is `2pi` meter

A

only `a,c` are true

B

only `a,b` are true

C

only `b,c` are true

D

`a,b,c` are true

Text Solution

AI Generated Solution

The correct Answer is:
To solve the question, we need to analyze the given wave equation and check the three statements regarding the wave's properties. ### Given Wave Equation: \[ y = 0.01 \sin(100t - x) \] ### Step 1: Identify Parameters From the wave equation, we can identify: - Amplitude \( A = 0.01 \, \text{m} \) - Angular frequency \( \omega = 100 \, \text{rad/s} \) - Wave number \( k \) ### Step 2: Calculate Wave Number \( k \) The general form of a progressive wave is: \[ y = A \sin(\omega t - kx) \] Comparing with the given equation, we have \( k = 1 \, \text{rad/m} \). ### Step 3: Calculate Velocity of the Wave The velocity \( v \) of the wave can be calculated using the formula: \[ v = \frac{\omega}{k} \] Substituting the values: \[ v = \frac{100 \, \text{rad/s}}{1 \, \text{rad/m}} = 100 \, \text{m/s} \] ### Step 4: Check Statement (a) The first statement claims that the velocity of the wave is \( 50 \, \text{m/s} \). Since we calculated the velocity to be \( 100 \, \text{m/s} \), this statement is **incorrect**. ### Step 5: Calculate Maximum Velocity of the Particle The maximum velocity \( V_{\text{max}} \) of a particle in the wave can be calculated using: \[ V_{\text{max}} = \omega A \] Substituting the values: \[ V_{\text{max}} = 100 \, \text{rad/s} \times 0.01 \, \text{m} = 1 \, \text{m/s} \] ### Step 6: Check Statement (b) The second statement claims that the maximum velocity of the particle is \( 1 \, \text{m/s} \). Since we calculated it to be \( 1 \, \text{m/s} \), this statement is **correct**. ### Step 7: Calculate Wavelength \( \lambda \) The relationship between wave number \( k \) and wavelength \( \lambda \) is given by: \[ k = \frac{2\pi}{\lambda} \] We know \( k = 1 \, \text{rad/m} \), so: \[ 1 = \frac{2\pi}{\lambda} \] Rearranging gives: \[ \lambda = 2\pi \, \text{m} \] ### Step 8: Check Statement (c) The third statement claims that the wavelength is \( 2\pi \, \text{m} \). Since we calculated it to be \( 2\pi \, \text{m} \), this statement is **correct**. ### Conclusion - Statement (a) is **incorrect**. - Statement (b) is **correct**. - Statement (c) is **correct**. ### Final Answers: - (a) False - (b) True - (c) True ---

To solve the question, we need to analyze the given wave equation and check the three statements regarding the wave's properties. ### Given Wave Equation: \[ y = 0.01 \sin(100t - x) \] ### Step 1: Identify Parameters From the wave equation, we can identify: - Amplitude \( A = 0.01 \, \text{m} \) ...
Promotional Banner

Topper's Solved these Questions

Similar Questions

Explore conceptually related problems

The equation of progressive wave is y=a sin (200 t-x) . where x is in meter and t is in second. The velocity of wave is

The equation of a progressive wave is y =4 sin (4 pi t-0.04 x+pi/3) where x is in metre and t is in second. The velocity of the wave is

The equation of a wave is given by y=a sin (100t-x/10) where x and y are in metre an t in second, the velocity of wave is

The equation of a progressive wave is given by y = 0.5 sin (20 x - 400 t) where xand y are in metre and tis in second. The velocity of the wave is

Equation of the progressive wave is given by : y=a sin pi (40 t-x) where a and x are in metre and t in second. The velocity of the wave is

The equation of a progressive wave is y=7sin(4t-0.02x) , where x and y are in cm time in second. The maximum velocity of a particle is……………

NARAYNA-WAVES-Exercise-I (C.W)
  1. Which of the following represents a progressive wave

    Text Solution

    |

  2. The equation of progressive wave is y=0.01sin(100t-x) where x,y are in...

    Text Solution

    |

  3. The equation y=A cos^(2) (2pi nt -2 pi (x)/(lambda)) represents a wave...

    Text Solution

    |

  4. A transverse wave is derscried by the equation y=y(0) sin 2 pi (ft - (...

    Text Solution

    |

  5. Two simple harmonic are represented by the equation y(1)=0.1 sin (100p...

    Text Solution

    |

  6. A transverse wave along a string is given by y = 2 sin (2pi (3t - ...

    Text Solution

    |

  7. The frequency of a fork is 500Hz . Velocity of sound in air is 350ms^(...

    Text Solution

    |

  8. The velocity of sound waves in air is 330m//s. For a particluar sound ...

    Text Solution

    |

  9. A wave has a frequency of 120Hz. Two points at a distance 9m apart hav...

    Text Solution

    |

  10. A source of frequency 500 Hz emits waves of wavelength 0.2 m. How long...

    Text Solution

    |

  11. The displacement of a wave disturbance propagating in the positive x-d...

    Text Solution

    |

  12. A wave of angular frequency omega propagates so that a certain phase o...

    Text Solution

    |

  13. A travelling wave has the frequency upsilon and the particle displacem...

    Text Solution

    |

  14. If Young's modulus of the material of a rod is Y and density is rho th...

    Text Solution

    |

  15. v20.1

    Text Solution

    |

  16. A transverse wave propagating on a stretched string of linear density ...

    Text Solution

    |

  17. The extension in a string, obeying Hooke's law, is x. The speed of sou...

    Text Solution

    |

  18. A uniform rope of length 12m and mass 6kg hangs vertically from a rigi...

    Text Solution

    |

  19. A string of length l hangs freely from a rigid support. The time requi...

    Text Solution

    |

  20. A transverse wave is passing through a light string shown in fig.The e...

    Text Solution

    |