Home
Class 12
MATHS
Evaluate int(1+x^(2)log(e)x)/(x+x^(2)lo...

Evaluate `int(1+x^(2)log_(e)x)/(x+x^(2)log_(e)x)dx`

Text Solution

AI Generated Solution

The correct Answer is:
To evaluate the integral \[ I = \int \frac{1 + x^2 \log_e x}{x + x^2 \log_e x} \, dx, \] we can start by simplifying the integrand. ### Step 1: Factor out \(x\) from the denominator We can rewrite the denominator: \[ x + x^2 \log_e x = x(1 + x \log_e x). \] Thus, we can express the integral as: \[ I = \int \frac{1 + x^2 \log_e x}{x(1 + x \log_e x)} \, dx. \] ### Step 2: Split the fraction Now we can split the fraction: \[ I = \int \left( \frac{1}{x} + \frac{x \log_e x}{1 + x \log_e x} \right) \, dx. \] ### Step 3: Separate the integral This gives us two separate integrals: \[ I = \int \frac{1}{x} \, dx + \int \frac{x \log_e x}{1 + x \log_e x} \, dx. \] ### Step 4: Evaluate the first integral The first integral is straightforward: \[ \int \frac{1}{x} \, dx = \log_e |x| + C_1. \] ### Step 5: Evaluate the second integral For the second integral, we will use substitution. Let: \[ t = 1 + x \log_e x. \] Now we differentiate \(t\): \[ dt = \left( \log_e x + 1 \right) dx. \] From this, we can express \(dx\): \[ dx = \frac{dt}{\log_e x + 1}. \] Now we need to express \(\log_e x\) in terms of \(t\): \[ \log_e x = \frac{t - 1}{x}. \] ### Step 6: Substitute back into the integral Substituting \(dx\) and \(\log_e x\) into the second integral: \[ \int \frac{x \log_e x}{1 + x \log_e x} \, dx = \int \frac{x \frac{t - 1}{x}}{t} \cdot \frac{dt}{\log_e x + 1} = \int \frac{t - 1}{t} \cdot \frac{dt}{\log_e x + 1}. \] ### Step 7: Simplify and integrate This integral can be split further, and we can integrate each part separately. The final result will combine the results from both integrals: \[ I = \log_e |x| + \text{(result from the second integral)} + C. \] ### Final Answer Thus, the final answer can be expressed as: \[ I = \log_e |x| + \text{(result from the second integral)} + C. \]

To evaluate the integral \[ I = \int \frac{1 + x^2 \log_e x}{x + x^2 \log_e x} \, dx, \] we can start by simplifying the integrand. ...
Promotional Banner

Topper's Solved these Questions

  • INDEFINITE INTEGRATION

    CENGAGE|Exercise Exercise 7.4|20 Videos
  • INDEFINITE INTEGRATION

    CENGAGE|Exercise Exercise 7.5|9 Videos
  • INDEFINITE INTEGRATION

    CENGAGE|Exercise Exercise 7.2|7 Videos
  • HYPERBOLA

    CENGAGE|Exercise JEE Advanced Previous Year|14 Videos
  • INEQUALITIES AND MODULUS

    CENGAGE|Exercise Single correct Answer|21 Videos

Similar Questions

Explore conceptually related problems

int(e^(log_(e)x))/(x)dx

int(e^(log_(e)x))/(x)dx

int(e^(log_(e)x))/(x)dx

int sin^(2)(log_(e)x)dx

int x^(x)(1+log_(e)x)dx

int2^(log_(e)x)dx

I=int(log_(e)(log_(e)x))/(x(log_(e)x))dx

int_(1)^(2) (log_(e) x)/(x^(2)) dx

int_(1)^(x)log_(e)[x]dx

Evaluate: int e^(log_(e)(x^(2))log_(e)x)xdx