Home
Class 12
MATHS
I=int \ loge (logex)/(x(loge x))dx...

`I=int \ log_e (log_ex)/(x(log_e x))dx`

Text Solution

Verified by Experts

The correct Answer is:
`((log_(e)(log_(e)x))^(2))/(2)+C`

`intlog_(e)(log_(e)x)*(1)/(x log_(e)x)dx`
`=int log_(e)(log_(e)x)*(log_(e)(log_(e)x))'dx`
`=((log_(e)(log_(e)x))^(2))/(2)+C`
Promotional Banner

Topper's Solved these Questions

  • INDEFINITE INTEGRATION

    CENGAGE|Exercise Exercise 7.4|20 Videos
  • INDEFINITE INTEGRATION

    CENGAGE|Exercise Exercise 7.5|9 Videos
  • INDEFINITE INTEGRATION

    CENGAGE|Exercise Exercise 7.2|7 Videos
  • HYPERBOLA

    CENGAGE|Exercise JEE Advanced Previous Year|14 Videos
  • INEQUALITIES AND MODULUS

    CENGAGE|Exercise Single correct Answer|21 Videos

Similar Questions

Explore conceptually related problems

I=int(log_(e)(log_(e)x))/(x(log_(e)x))dx

The integral inte^x(f(x)+f\'(x))dx can be solved by using integration by parts such that: I=inte^xf(x)dx+inte^xf\'(x)dx=e^xf(x)-inte^xf\'(x)dx+inte^xf\'(x)dx=e^xf(x)+C , and inte^(ax)(f(x)+(f\'(x))/a)dx=e^(ax)f(x)/a+C ,Now answer the question: int{log_e(log_ex)+1/(log_ex)^2}dx is equal to (A) log_e(log_ex)+C (B) xlog_e(log_ex)-x/log_ex+C (C) x/log_ex-log_ex+C (D) log_e(log_ex)-x/log_ex+C

int log_(e)xdx=int(1)/(log_(x)e)dx=

int(e^(log_(e)x))/(x)dx

int(e^(log_(e)x))/(x)dx

int(e^(log_(e)x))/(x)dx

int e^(a log_(e)x)dx

int x log_(e)(1+x)dx

I=int e^(x log x)(1+log x)