Home
Class 12
MATHS
Evaluate int "cosec"^(4)x dx...

Evaluate `int "cosec"^(4)x dx`

Text Solution

AI Generated Solution

The correct Answer is:
To evaluate the integral \( \int \csc^4 x \, dx \), we can follow these steps: ### Step 1: Rewrite the Integral We start by rewriting \( \csc^4 x \) in terms of \( \cot x \): \[ \csc^4 x = \frac{1}{\sin^4 x} = \frac{\cos^4 x}{\sin^4 x} = \cot^4 x + 1 \] Thus, we can express the integral as: \[ \int \csc^4 x \, dx = \int (\cot^4 x + 1) \, dx \] ### Step 2: Split the Integral Now, we can split the integral into two parts: \[ \int \csc^4 x \, dx = \int \cot^4 x \, dx + \int 1 \, dx \] ### Step 3: Integrate the Second Part The integral of \( 1 \) is straightforward: \[ \int 1 \, dx = x \] ### Step 4: Integrate the First Part Now, we need to integrate \( \cot^4 x \). We can use the identity \( \cot^2 x = \csc^2 x - 1 \): \[ \cot^4 x = (\cot^2 x)^2 = (\csc^2 x - 1)^2 \] Expanding this gives: \[ \cot^4 x = \csc^4 x - 2\csc^2 x + 1 \] Thus, we can rewrite the integral: \[ \int \cot^4 x \, dx = \int (\csc^4 x - 2\csc^2 x + 1) \, dx \] ### Step 5: Substitute and Integrate Now we can integrate each term separately: \[ \int \cot^4 x \, dx = \int \csc^4 x \, dx - 2\int \csc^2 x \, dx + \int 1 \, dx \] Let \( I = \int \csc^4 x \, dx \). Then we have: \[ I = I - 2\int \csc^2 x \, dx + x \] Rearranging gives: \[ 0 = -2\int \csc^2 x \, dx + x \] Thus: \[ 2\int \csc^2 x \, dx = x \] ### Step 6: Solve for the Integral The integral \( \int \csc^2 x \, dx \) is known: \[ \int \csc^2 x \, dx = -\cot x + C \] Substituting back gives: \[ 2(-\cot x) = x \] So we have: \[ I = -\frac{1}{3} \cot^3 x - \cot x + x + C \] ### Final Answer Thus, the final result of the integral is: \[ \int \csc^4 x \, dx = -\frac{1}{3} \cot^3 x - \cot x + x + C \] ---

To evaluate the integral \( \int \csc^4 x \, dx \), we can follow these steps: ### Step 1: Rewrite the Integral We start by rewriting \( \csc^4 x \) in terms of \( \cot x \): \[ \csc^4 x = \frac{1}{\sin^4 x} = \frac{\cos^4 x}{\sin^4 x} = \cot^4 x + 1 \] Thus, we can express the integral as: ...
Promotional Banner

Topper's Solved these Questions

  • INDEFINITE INTEGRATION

    CENGAGE|Exercise Exercise 7.4|20 Videos
  • INDEFINITE INTEGRATION

    CENGAGE|Exercise Exercise 7.5|9 Videos
  • INDEFINITE INTEGRATION

    CENGAGE|Exercise Exercise 7.2|7 Videos
  • HYPERBOLA

    CENGAGE|Exercise JEE Advanced Previous Year|14 Videos
  • INEQUALITIES AND MODULUS

    CENGAGE|Exercise Single correct Answer|21 Videos

Similar Questions

Explore conceptually related problems

int " cosec"^(4) 2x dx

int"cosec"^(2)(2x+5)dx

Evaluate: int csc^(4)3xdx

Evaluate: int csc^(4)xdx

Evaluate : int( cosec^2( x/3 ) dx

Evaluate int cosec^(2)x ln (cos x + sqrt(cos 2x))dx .

int"cosec"^(4)x dx is equal to

Evaluate : int ( cosec^2 ( 3 - x/4 ) dx = ------ + c

Evaluate: int cosec^(2)((x)/(2))dx