Home
Class 12
MATHS
Evaluate int tan^(3)x dx...

Evaluate `int tan^(3)x dx`

Text Solution

AI Generated Solution

The correct Answer is:
To evaluate the integral \( \int \tan^3 x \, dx \), we can follow these steps: ### Step 1: Rewrite \( \tan^3 x \) We can express \( \tan^3 x \) as: \[ \tan^3 x = \tan x \cdot \tan^2 x \] Using the identity \( \tan^2 x = \sec^2 x - 1 \), we can rewrite it as: \[ \tan^3 x = \tan x \cdot (\sec^2 x - 1) \] ### Step 2: Substitute into the integral Now, substitute this back into the integral: \[ \int \tan^3 x \, dx = \int \tan x (\sec^2 x - 1) \, dx \] This can be separated into two integrals: \[ \int \tan x \sec^2 x \, dx - \int \tan x \, dx \] ### Step 3: Evaluate \( \int \tan x \sec^2 x \, dx \) For the first integral, we can use the substitution \( u = \tan x \), which gives \( du = \sec^2 x \, dx \): \[ \int \tan x \sec^2 x \, dx = \int u \, du = \frac{u^2}{2} + C = \frac{\tan^2 x}{2} + C \] ### Step 4: Evaluate \( \int \tan x \, dx \) The second integral can be evaluated using the known result: \[ \int \tan x \, dx = -\ln |\cos x| + C \] ### Step 5: Combine the results Now we combine both results: \[ \int \tan^3 x \, dx = \frac{\tan^2 x}{2} - (-\ln |\cos x|) + C \] This simplifies to: \[ \int \tan^3 x \, dx = \frac{\tan^2 x}{2} + \ln |\cos x| + C \] ### Final Answer Thus, the final result is: \[ \int \tan^3 x \, dx = \frac{\tan^2 x}{2} + \ln |\cos x| + C \]

To evaluate the integral \( \int \tan^3 x \, dx \), we can follow these steps: ### Step 1: Rewrite \( \tan^3 x \) We can express \( \tan^3 x \) as: \[ \tan^3 x = \tan x \cdot \tan^2 x \] Using the identity \( \tan^2 x = \sec^2 x - 1 \), we can rewrite it as: ...
Promotional Banner

Topper's Solved these Questions

  • INDEFINITE INTEGRATION

    CENGAGE|Exercise Exercise 7.4|20 Videos
  • INDEFINITE INTEGRATION

    CENGAGE|Exercise Exercise 7.5|9 Videos
  • INDEFINITE INTEGRATION

    CENGAGE|Exercise Exercise 7.2|7 Videos
  • HYPERBOLA

    CENGAGE|Exercise JEE Advanced Previous Year|14 Videos
  • INEQUALITIES AND MODULUS

    CENGAGE|Exercise Single correct Answer|21 Videos

Similar Questions

Explore conceptually related problems

Evaluate int tan^(2) x dx

Evaluate: (i) int tan^(3)x sec^(2)xdx( ii) int((log x)^(3))/(x)dx

Evaluate (i) int tan^(3/2)x sec^(2)xdx (ii) int(x^(3))/((x^(2)+1)^(3))dx

Evaluate : int tan(x+a)dx

Evaluate int(tan x+tan^(3)x)/(1+tan^(3)x)dx

Evaluate int (x+tan^(-1)x)dx

Evaluate : int (tan^(-1)x)^(4)/(1+x^2) dx

Evaluate : int tan^(-1)((x-5)/(1+5x))dx

Evaluate: int tan^(-1)((2x)/(1-x^(2)))dx

Evaluate int(tan^(-1)x)/(x^(4))dx .