Home
Class 12
MATHS
Evaluate int(x^(2)+x+1)/(x^(2)-1)dx...

Evaluate `int(x^(2)+x+1)/(x^(2)-1)dx`

Text Solution

AI Generated Solution

The correct Answer is:
To evaluate the integral \(\int \frac{x^2 + x + 1}{x^2 - 1} \, dx\), we will follow these steps: ### Step 1: Polynomial Long Division Since the degree of the numerator \(x^2 + x + 1\) is equal to the degree of the denominator \(x^2 - 1\), we perform polynomial long division. 1. Divide \(x^2 + x + 1\) by \(x^2 - 1\): - The first term is \(1\) (since \(x^2 / x^2 = 1\)). - Multiply \(1\) by \(x^2 - 1\) to get \(x^2 - 1\). - Subtract: \[ (x^2 + x + 1) - (x^2 - 1) = x + 2. \] So, we can rewrite the integral as: \[ \int \left(1 + \frac{x + 2}{x^2 - 1}\right) \, dx. \] ### Step 2: Separate the Integral Now we can separate the integral: \[ \int 1 \, dx + \int \frac{x + 2}{x^2 - 1} \, dx. \] ### Step 3: Evaluate the First Integral The first integral is straightforward: \[ \int 1 \, dx = x. \] ### Step 4: Evaluate the Second Integral Now we need to evaluate \(\int \frac{x + 2}{x^2 - 1} \, dx\). We can split this into two parts: \[ \int \frac{x}{x^2 - 1} \, dx + \int \frac{2}{x^2 - 1} \, dx. \] #### Step 4.1: Evaluate \(\int \frac{x}{x^2 - 1} \, dx\) For \(\int \frac{x}{x^2 - 1} \, dx\), we can use substitution: Let \(t = x^2 - 1\), then \(dt = 2x \, dx\) or \(\frac{dt}{2} = x \, dx\). Thus, we have: \[ \int \frac{x}{x^2 - 1} \, dx = \frac{1}{2} \int \frac{1}{t} \, dt = \frac{1}{2} \ln |t| + C = \frac{1}{2} \ln |x^2 - 1| + C. \] #### Step 4.2: Evaluate \(\int \frac{2}{x^2 - 1} \, dx\) For \(\int \frac{2}{x^2 - 1} \, dx\), we can use partial fraction decomposition: \[ \frac{2}{x^2 - 1} = \frac{2}{(x - 1)(x + 1)} = \frac{A}{x - 1} + \frac{B}{x + 1}. \] Multiplying through by \(x^2 - 1\) gives: \[ 2 = A(x + 1) + B(x - 1). \] Setting \(x = 1\) gives \(2 = 2A \Rightarrow A = 1\). Setting \(x = -1\) gives \(2 = -2B \Rightarrow B = -1\). So, we have: \[ \frac{2}{x^2 - 1} = \frac{1}{x - 1} - \frac{1}{x + 1}. \] Thus, \[ \int \frac{2}{x^2 - 1} \, dx = \int \left(\frac{1}{x - 1} - \frac{1}{x + 1}\right) \, dx = \ln |x - 1| - \ln |x + 1| + C = \ln \left|\frac{x - 1}{x + 1}\right| + C. \] ### Step 5: Combine All Parts Now we combine all parts: \[ \int \frac{x^2 + x + 1}{x^2 - 1} \, dx = x + \frac{1}{2} \ln |x^2 - 1| + \ln \left|\frac{x - 1}{x + 1}\right| + C. \] ### Final Answer Thus, the final answer is: \[ \int \frac{x^2 + x + 1}{x^2 - 1} \, dx = x + \frac{1}{2} \ln |x^2 - 1| + \ln \left|\frac{x - 1}{x + 1}\right| + C. \]

To evaluate the integral \(\int \frac{x^2 + x + 1}{x^2 - 1} \, dx\), we will follow these steps: ### Step 1: Polynomial Long Division Since the degree of the numerator \(x^2 + x + 1\) is equal to the degree of the denominator \(x^2 - 1\), we perform polynomial long division. 1. Divide \(x^2 + x + 1\) by \(x^2 - 1\): - The first term is \(1\) (since \(x^2 / x^2 = 1\)). - Multiply \(1\) by \(x^2 - 1\) to get \(x^2 - 1\). ...
Promotional Banner

Topper's Solved these Questions

  • INDEFINITE INTEGRATION

    CENGAGE|Exercise Exercise 7.6|6 Videos
  • INDEFINITE INTEGRATION

    CENGAGE|Exercise Exercise 7.7|10 Videos
  • INDEFINITE INTEGRATION

    CENGAGE|Exercise Exercise 7.4|20 Videos
  • HYPERBOLA

    CENGAGE|Exercise JEE Advanced Previous Year|14 Videos
  • INEQUALITIES AND MODULUS

    CENGAGE|Exercise Single correct Answer|21 Videos

Similar Questions

Explore conceptually related problems

Evaluate: int(x^(2)+x+1)/(x^(2)-x+1)dx

Evaluate: int(x^(2)+1)/(x(x^(2)-1))dx

Evaluate: int(x^(2)+x+1)/(x^(2)-x)dx

Evaluate : int(x^(2)-x+2)/(x^(2)+1)dx

Evaluate : int_(1)^(2) (x )/(1+x^(2))dx

Evaluate : int(x^(2)-1)/((x+1)(x+2))dx

Evaluate: int(x^(2)+3x+1)/((x+1)^(2))dx

Evaluate: int(x^(2)+x+1)/((x-1)^(3))dx

Evaluate :int(x^(4)+x^(2)+1)/(x^(2)-x+1)dx

Evaluate: int(x^(4)+x^(2)+1)/(x^(2)-x+1)dx