Home
Class 12
MATHS
Evaluate: 1/(sqrt(1-e^(2x)))dx...

Evaluate: `1/(sqrt(1-e^(2x)))dx`

Text Solution

Verified by Experts

The correct Answer is:
`-log|e^(-x)+sqrt(e^(-2x)-1)|+C`

`I=int(1)/(sqrt(1-e^(2x)))dx=int(1)/(sqrt(1-(1)/(e^(-2x))))dx=int(e^(-x))/(sqrt(e^(-2x)-1))dx`
`=int(e^(-x))/(sqrt((e^(-x))^(2)-1^(2)))dx`
`"Let " e^(-x)=t " or " -e^(-x)dx=dt`
` :. I= -int(dt)/(sqrt(t^(2)-1^(2)))= -log|t+sqrt(t^(2)-1)|+C`
`= -log|e^(-x)+sqrt(e^(-2x)-1)|+C`
Promotional Banner

Topper's Solved these Questions

  • INDEFINITE INTEGRATION

    CENGAGE|Exercise Exercise 7.7|10 Videos
  • INDEFINITE INTEGRATION

    CENGAGE|Exercise Exercise 7.8|7 Videos
  • INDEFINITE INTEGRATION

    CENGAGE|Exercise Exercise 7.5|9 Videos
  • HYPERBOLA

    CENGAGE|Exercise JEE Advanced Previous Year|14 Videos
  • INEQUALITIES AND MODULUS

    CENGAGE|Exercise Single correct Answer|21 Videos

Similar Questions

Explore conceptually related problems

Evaluate int 1/sqrt(1-e^(-2x))dx

Evaluate : int (1)/(sqrt(1-e^(2x))) " dx "

Evaluate: intdx/sqrt (e^(2x)-1)

int(e^(2x))/(sqrt(1-e^(2x)))dx

Evaluate: int sqrt(e^(x)-1)dx

Evaluate: int sqrt(1+e^(x))e^(x)dx

int(dx)/(sqrt(1-e^(2x)))=?

Column I, a) int(e^(2x)-1)/(e^(2x)+1)dx is equal to b) int1/((e^x+e^(-x))^2)dx is equal to c) int(e^(-x))/(1+e^x)dx is equal to d) int1/(sqrt(1-e^(2x)))dx is equal to COLUMN II p) x-log[1+sqrt(1-e^(2x)]+c q) log(e^x+1)-x-e^(-x)+c r) log(e^(2x)+1)-x+c s) -1/(2(e^(2x)+1))+c

Evaluate: int(x+1)/(sqrt(2x-1))dx