Home
Class 12
MATHS
Evaluate int(sqrt(tanx)+sqrt(cotx))dx...

Evaluate `int(sqrt(tanx)+sqrt(cotx))dx`

Text Solution

AI Generated Solution

The correct Answer is:
To evaluate the integral \( \int (\sqrt{\tan x} + \sqrt{\cot x}) \, dx \), we can follow these steps: ### Step 1: Rewrite the integrand We start by rewriting \( \tan x \) and \( \cot x \) in terms of sine and cosine: \[ \sqrt{\tan x} = \sqrt{\frac{\sin x}{\cos x}} \quad \text{and} \quad \sqrt{\cot x} = \sqrt{\frac{\cos x}{\sin x}} \] Thus, we can express the integral as: \[ \int \left( \sqrt{\frac{\sin x}{\cos x}} + \sqrt{\frac{\cos x}{\sin x}} \right) \, dx \] ### Step 2: Combine the terms Next, we can combine the two square roots over a common denominator: \[ \sqrt{\tan x} + \sqrt{\cot x} = \frac{\sqrt{\sin x} \cdot \sqrt{\sin x} + \sqrt{\cos x} \cdot \sqrt{\cos x}}{\sqrt{\sin x \cos x}} = \frac{\sqrt{\sin^2 x + \cos^2 x}}{\sqrt{\sin x \cos x}} \] Since \( \sin^2 x + \cos^2 x = 1 \), we have: \[ \sqrt{\tan x} + \sqrt{\cot x} = \frac{1}{\sqrt{\sin x \cos x}} \] Thus, the integral becomes: \[ \int \frac{1}{\sqrt{\sin x \cos x}} \, dx \] ### Step 3: Simplify using a trigonometric identity We can use the identity \( \sin x \cos x = \frac{1}{2} \sin(2x) \): \[ \sqrt{\sin x \cos x} = \sqrt{\frac{1}{2} \sin(2x)} = \frac{1}{\sqrt{2}} \sqrt{\sin(2x)} \] So, we can rewrite the integral as: \[ \int \frac{1}{\frac{1}{\sqrt{2}} \sqrt{\sin(2x)}} \, dx = \sqrt{2} \int \frac{1}{\sqrt{\sin(2x)}} \, dx \] ### Step 4: Use substitution Let \( t = \sin(2x) \), then \( dt = 2\cos(2x) \, dx \) or \( dx = \frac{dt}{2\cos(2x)} \). We also need to express \( \cos(2x) \) in terms of \( t \): \[ \cos(2x) = \sqrt{1 - t^2} \] Substituting these into the integral gives: \[ \sqrt{2} \int \frac{1}{\sqrt{t}} \cdot \frac{dt}{2\sqrt{1 - t^2}} = \frac{\sqrt{2}}{2} \int \frac{1}{\sqrt{t(1 - t^2)}} \, dt \] ### Step 5: Solve the integral This integral can be solved using standard integral tables or known results: \[ \int \frac{1}{\sqrt{t(1 - t^2)}} \, dt = \sin^{-1}(\sqrt{t}) + C \] Thus, we have: \[ \frac{\sqrt{2}}{2} \left( \sin^{-1}(\sqrt{\sin(2x)}) + C \right) \] ### Final Answer Therefore, the evaluated integral is: \[ \frac{\sqrt{2}}{2} \sin^{-1}(\sqrt{\sin(2x)}) + C \]

To evaluate the integral \( \int (\sqrt{\tan x} + \sqrt{\cot x}) \, dx \), we can follow these steps: ### Step 1: Rewrite the integrand We start by rewriting \( \tan x \) and \( \cot x \) in terms of sine and cosine: \[ \sqrt{\tan x} = \sqrt{\frac{\sin x}{\cos x}} \quad \text{and} \quad \sqrt{\cot x} = \sqrt{\frac{\cos x}{\sin x}} \] Thus, we can express the integral as: ...
Promotional Banner

Topper's Solved these Questions

  • INDEFINITE INTEGRATION

    CENGAGE|Exercise Exercise 7.8|7 Videos
  • INDEFINITE INTEGRATION

    CENGAGE|Exercise Exercise 7.9|15 Videos
  • INDEFINITE INTEGRATION

    CENGAGE|Exercise Exercise 7.6|6 Videos
  • HYPERBOLA

    CENGAGE|Exercise JEE Advanced Previous Year|14 Videos
  • INEQUALITIES AND MODULUS

    CENGAGE|Exercise Single correct Answer|21 Videos

Similar Questions

Explore conceptually related problems

Evaluate: int(sqrt(tanx))dx

Evaluate int sqrt(x)dx

Evaluate int(sqrt(tanx))/(sinx cosx)dx

Evaluate: int(sqrt(cotx)-sqrt(tanx))/(1+3sin2x)dx

Evaluate : int sqrt(x)" dx "

If : int(sqrt(tanx)+sqrt(cotx))dx=m sin^(-1)(u)+c, then :

Evaluate int(sqrt(tanx))/(sinx. cos x) dx

The value of int(sqrt(tanx)/(sinx cosx)) dx is equal to

Evaluate : int ( sqrt( a/x ) + sqrt( x /a ) ) dx

If l=int(sqrt(tanx)+sqrt(cotx))dx=f(x)+c then f(x) is equal to