Home
Class 12
MATHS
int(sqrt(x-1))/(x sqrt(x+1))dx " is equa...

`int(sqrt(x-1))/(x sqrt(x+1))dx " is equal to "`

A

`"Ln "|x-sqrt(x^(2)-1)|-tan^(-1)x+c`

B

`"In "|x+sqrt(x^(2)-1)|-tan^(-1)x+c`

C

`"In "|x-sqrt(x^(2)-1)|-sec^(-1)x+c`

D

`"In "|x+sqrt(x^(2)-1)|-sec^(-1)x+c`

Text Solution

AI Generated Solution

The correct Answer is:
To solve the integral \( \int \frac{\sqrt{x-1}}{x \sqrt{x+1}} \, dx \), we will follow these steps: ### Step 1: Rewrite the Integral We start with the integral: \[ I = \int \frac{\sqrt{x-1}}{x \sqrt{x+1}} \, dx \] ### Step 2: Multiply and Simplify To simplify the integral, we can multiply the numerator and denominator by \( \sqrt{x-1} \): \[ I = \int \frac{(\sqrt{x-1})^2}{x \sqrt{x+1} \sqrt{x-1}} \, dx = \int \frac{x-1}{x \sqrt{x^2 - 1}} \, dx \] Here, we used the identity \( a^2 - b^2 = (a-b)(a+b) \). ### Step 3: Split the Integral Now, we can split the integral into two parts: \[ I = \int \left( \frac{x}{x \sqrt{x^2 - 1}} - \frac{1}{x \sqrt{x^2 - 1}} \right) \, dx \] This simplifies to: \[ I = \int \frac{1}{\sqrt{x^2 - 1}} \, dx - \int \frac{1}{x \sqrt{x^2 - 1}} \, dx \] ### Step 4: Integrate Each Part 1. The first integral \( \int \frac{1}{\sqrt{x^2 - 1}} \, dx \) is known to be: \[ \ln |x + \sqrt{x^2 - 1}| + C_1 \] 2. The second integral \( \int \frac{1}{x \sqrt{x^2 - 1}} \, dx \) is: \[ \sec^{-1}(x) + C_2 \] ### Step 5: Combine the Results Combining both results, we have: \[ I = \ln |x + \sqrt{x^2 - 1}| - \sec^{-1}(x) + C \] where \( C = C_1 - C_2 \) is the constant of integration. ### Final Result Thus, the final answer is: \[ \int \frac{\sqrt{x-1}}{x \sqrt{x+1}} \, dx = \ln |x + \sqrt{x^2 - 1}| - \sec^{-1}(x) + C \]

To solve the integral \( \int \frac{\sqrt{x-1}}{x \sqrt{x+1}} \, dx \), we will follow these steps: ### Step 1: Rewrite the Integral We start with the integral: \[ I = \int \frac{\sqrt{x-1}}{x \sqrt{x+1}} \, dx \] ...
Promotional Banner

Topper's Solved these Questions

  • INDEFINITE INTEGRATION

    CENGAGE|Exercise Exercise (Multiple)|17 Videos
  • INDEFINITE INTEGRATION

    CENGAGE|Exercise Exercise (Comprehension)|17 Videos
  • INDEFINITE INTEGRATION

    CENGAGE|Exercise Exercise 7.9|15 Videos
  • HYPERBOLA

    CENGAGE|Exercise JEE Advanced Previous Year|14 Videos
  • INEQUALITIES AND MODULUS

    CENGAGE|Exercise Single correct Answer|21 Videos

Similar Questions

Explore conceptually related problems

int (sqrt(x)-(1)/(sqrt(x)))dx

int(1)/(x sqrt(x-1))dx

int(sqrt(x))/(1+4sqrt(x^(3)))dx is equal to

int(a^(sqrt(x)))/(sqrt(x))dx is equal to

int(sqrt(x)+(1)/(sqrt(x)))dx

int(sqrt(x)+(1)/(sqrt(x)))dx

int(1)/(sqrt((x+1))-sqrt(x))dx

int(1)/(sqrt((x+1))-sqrt(x))dx

int(sqrt(x^2+1))/(x^(4))dx" is equal to "

int(sqrt(x)-sqrt(a))/(sqrt(x+a))dx equals