Home
Class 12
MATHS
If I= int (sin 2x)/((3+4cosx)^(3))dx, t...

If `I= int (sin 2x)/((3+4cosx)^(3))dx,` then `I` equals

A

`(3cos x+8)/((3+4cosx)^(2))+C`

B

`(3+8cos x)/(16(3+4cosx)^(2))+C`

C

`(3+cos x)/((3+4cosx)^(2))+C`

D

`(3-8cos x)/(16(3+4cosx)^(2))+C`

Text Solution

Verified by Experts

The correct Answer is:
B

`I= int (sin 2x)/((3+4cosx)^(3))dx`
Put `3+4cosx=t," so that " -4sinx dx=dt.` Then
`I=(-1)/(8)int((t-3))/(t^(3))dt=(1)/(8)((1)/(t)-(3)/(2)(1)/(t^(2)))+C`
`=(2t-3)/(16t^(2))=(8cosx+3)/(16(3+4cosx)^(2))+C`
Promotional Banner

Topper's Solved these Questions

  • INDEFINITE INTEGRATION

    CENGAGE|Exercise Exercise (Multiple)|17 Videos
  • INDEFINITE INTEGRATION

    CENGAGE|Exercise Exercise (Comprehension)|17 Videos
  • INDEFINITE INTEGRATION

    CENGAGE|Exercise Exercise 7.9|15 Videos
  • HYPERBOLA

    CENGAGE|Exercise JEE Advanced Previous Year|14 Videos
  • INEQUALITIES AND MODULUS

    CENGAGE|Exercise Single correct Answer|21 Videos

Similar Questions

Explore conceptually related problems

If I=int(sin2x)/((3+4cosx)^(3))dx , then I=

int(dx)/(sin x(3+2cosx))

If I=int(dx)/(sin(x-(pi)/(3))cos x), then I equals

int(sin3x)/(cosx)dx=

I= int sin^(2) 3x dx .

int(3+2cosx)/((2+3cosx)^(2))dx is equal to

I=inte^(cosx-sinx)(sin x+cos x)dx

I=int (sinx+cosx)/sqrt(1-sin2x) dx