Home
Class 12
MATHS
int sqrt(e^(x)-1)dx is equal to...

`int sqrt(e^(x)-1)dx` is equal to

A

`2[sqrt(e^(x)-1)-tan^(-1) sqrt(e^(x)-1)]+c`

B

`sqrt(e^(x)-1)-tan^(-1) sqrt(e^(x)-1)+c`

C

`sqrt(e^(x)-1)+tan^(-1) sqrt(e^(x)-1)+c`

D

`2[sqrt(e^(x)-1)+tan^(-1) sqrt(e^(x)-1)]+c`

Text Solution

AI Generated Solution

The correct Answer is:
To solve the integral \( \int \sqrt{e^x - 1} \, dx \), we will use substitution and integration techniques. Here’s a step-by-step solution: ### Step 1: Substitution Let us set: \[ t^2 = e^x - 1 \] This implies: \[ e^x = t^2 + 1 \] ### Step 2: Differentiate Now, differentiate both sides with respect to \( x \): \[ \frac{d}{dx}(e^x) = \frac{d}{dx}(t^2 + 1) \] This gives: \[ e^x = 2t \frac{dt}{dx} \] From this, we can express \( dx \) in terms of \( dt \): \[ dx = \frac{e^x}{2t} \, dt = \frac{t^2 + 1}{2t} \, dt \] ### Step 3: Substitute in the Integral Now substitute \( \sqrt{e^x - 1} \) and \( dx \) into the integral: \[ \int \sqrt{t^2} \cdot \frac{t^2 + 1}{2t} \, dt = \int t \cdot \frac{t^2 + 1}{2t} \, dt = \int \frac{t^2 + 1}{2} \, dt \] ### Step 4: Simplify the Integral This simplifies to: \[ \int \frac{t^2 + 1}{2} \, dt = \frac{1}{2} \int (t^2 + 1) \, dt \] Now, we can integrate: \[ \frac{1}{2} \left( \frac{t^3}{3} + t \right) + C = \frac{t^3}{6} + \frac{t}{2} + C \] ### Step 5: Substitute Back Now, substitute \( t = \sqrt{e^x - 1} \) back into the expression: \[ \frac{(\sqrt{e^x - 1})^3}{6} + \frac{\sqrt{e^x - 1}}{2} + C \] This simplifies to: \[ \frac{(e^x - 1)^{3/2}}{6} + \frac{\sqrt{e^x - 1}}{2} + C \] ### Final Answer Thus, the integral \( \int \sqrt{e^x - 1} \, dx \) is given by: \[ \frac{(e^x - 1)^{3/2}}{6} + \frac{\sqrt{e^x - 1}}{2} + C \]

To solve the integral \( \int \sqrt{e^x - 1} \, dx \), we will use substitution and integration techniques. Here’s a step-by-step solution: ### Step 1: Substitution Let us set: \[ t^2 = e^x - 1 \] This implies: ...
Promotional Banner

Topper's Solved these Questions

  • INDEFINITE INTEGRATION

    CENGAGE|Exercise Exercise (Multiple)|17 Videos
  • INDEFINITE INTEGRATION

    CENGAGE|Exercise Exercise (Comprehension)|17 Videos
  • INDEFINITE INTEGRATION

    CENGAGE|Exercise Exercise 7.9|15 Videos
  • HYPERBOLA

    CENGAGE|Exercise JEE Advanced Previous Year|14 Videos
  • INEQUALITIES AND MODULUS

    CENGAGE|Exercise Single correct Answer|21 Videos

Similar Questions

Explore conceptually related problems

int e^(x)dx is equal to

int(1)/(e^(x)-1)dx is equal to

Column I, a) int(e^(2x)-1)/(e^(2x)+1)dx is equal to b) int1/((e^x+e^(-x))^2)dx is equal to c) int(e^(-x))/(1+e^x)dx is equal to d) int1/(sqrt(1-e^(2x)))dx is equal to COLUMN II p) x-log[1+sqrt(1-e^(2x)]+c q) log(e^x+1)-x-e^(-x)+c r) log(e^(2x)+1)-x+c s) -1/(2(e^(2x)+1))+c

int1/(1+e^(x))dx is equal to

inte^(sqrt(x))dx is equal to

int(1)/(e^(x)+1)dx is equal to

int(1)/(e^(x)+1)dx is equal to

int tan^(-1){sqrt(sqrt(x)-1)}dx is equal to

int(e^x)/(e^(x)+1)dx" is equal to "

int sqrt(sec x-1)dx equal to