Home
Class 12
MATHS
int(sqrt(x^2+1))/(x^4)dx=...

`int(sqrt(x^2+1))/(x^4)dx=`

A

`-(1)/(3)((x^(2)+1)^(3//2))/(x^(3))+C`

B

`x^(3)(x^(2)+1)^(-1//2)+C`

C

`(sqrt(x^(2)+1))/(x^(2))+C`

D

`-(1)/(3)((x^(2)+1)^(3//2))/(x^(2))+C`

Text Solution

Verified by Experts

The correct Answer is:
A

Put `x=tan theta " so that " sqrt(x^(2)+1)=sec theta, dx=sec^(2) theta d theta`
` :. I=int(sec theta sec^(2) theta)/(tan^(4)theta)d theta=int (cos theta)/(sin^(4)theta)d theta`
`= -(1)/(3)(1)/(sin^(3)theta)+C`
`= -(1)/(3)(sec^(2)theta)/(tan^(3)theta)+C`
`= -(1)/(3)((x^(2)+1)^(3//2))/(x^(3))+C`
Promotional Banner

Topper's Solved these Questions

  • INDEFINITE INTEGRATION

    CENGAGE|Exercise Exercise (Multiple)|17 Videos
  • INDEFINITE INTEGRATION

    CENGAGE|Exercise Exercise (Comprehension)|17 Videos
  • INDEFINITE INTEGRATION

    CENGAGE|Exercise Exercise 7.9|15 Videos
  • HYPERBOLA

    CENGAGE|Exercise JEE Advanced Previous Year|14 Videos
  • INEQUALITIES AND MODULUS

    CENGAGE|Exercise Single correct Answer|21 Videos

Similar Questions

Explore conceptually related problems

Evaluate: int(sqrt(1+x^(2)))/(x^(4))dx

int(sqrt(1+x^(2)))/(x^(4))dx

If int(sqrt(1-x^2))/x^4dx=A(x) (sqrt(1-x^2))^m+C ,for a suitable chosen integer m and a function A(x), where C is a constant of integration, then (A(x))^m equals

Evaluate : (i) int(dx)/(1+sqrt(x)) (ii) int(x+sqrt(x+1))/(x+2)dx

int(1)/(sqrt(4-x^(2)))dx

int(x^2+1)/sqrt(x^2+4)dx

int sqrt(1-4x^(2))dx

int(x)/(sqrt(1-4x^(2)))dx

Evaluate the following : (i) int(x+(1)/(x))^(3//2)((x^(2)-1)/(x^(2)))dx " (ii) " int(sqrt(2+logx))/(x)dx (iii) int((sin^(-1)x)^(3))/(sqrt(1-x^(2)))dx " (iv) " int(cotx)/(sqrt(sinx))dx

int(1)/(sqrt(4x^(2)-x+4))dx