Home
Class 12
MATHS
If I=inte^(-x)log(e^x+1)dx ,t h e nIe q ...

If `I=inte^(-x)log(e^x+1)dx ,t h e nIe q u a l` `a+(e^(-x)+1)log(e^x+1)+C` `a+(e^x+1)log(e^x+1)+C` `a-(e^(-x)+1)log(e^x+1)+C` none of these

A

`x+(e^(-x)+1)log(e^(x)+1)+C`

B

`x+(e^(x)+1)log(e^(x)+1)+C`

C

`x-(e^(-x)+1)log(e^(x)+1)+C`

D

none of these

Text Solution

Verified by Experts

The correct Answer is:
C

`I=-e^(-x)log(e^(x)+1)+int(e^(-x)e^(x))/(e^(x)+1)dx `
`=-e^(-x)log(e^(x)+1)+int(e^(-x))/(e^(-x)+1)dx`
`=-e^(-x)log(e^(x)+1)-log(e^(-x)+1)+C`
`=-e^(-x)log(e^(x)+1)-log(1+e^(x))+x+C`
`=-(e^(-x)+1)log(e^(x)+1)+x+C`
Promotional Banner

Topper's Solved these Questions

  • INDEFINITE INTEGRATION

    CENGAGE|Exercise Exercise (Multiple)|17 Videos
  • INDEFINITE INTEGRATION

    CENGAGE|Exercise Exercise (Comprehension)|17 Videos
  • INDEFINITE INTEGRATION

    CENGAGE|Exercise Exercise 7.9|15 Videos
  • HYPERBOLA

    CENGAGE|Exercise JEE Advanced Previous Year|14 Videos
  • INEQUALITIES AND MODULUS

    CENGAGE|Exercise Single correct Answer|21 Videos

Similar Questions

Explore conceptually related problems

If I=int e^(-x)log(e^(x)+1)dx, then equal

int e^(x) (e^(log x)+1) dx

int e^(x)(x+ln x)(x+1)dx

int log(e^(x)+1)(e^(x))dx

int(e^(x)(x log x+1))/(x)dx is equal to

int(ln(e^(x)+1))/(e^(x))dx

I=int e^(x log x)(1+log x)

int e^(x)((1+x log x)/(x))dx

If log e^(x)+log e^(1+x)=0 then x=

int(ln(1+e^(x))-x)/(1+e^(x))dx equals: