Home
Class 12
MATHS
"If " int x e^(x) cosx dx=ae^(x)(b(1-x)s...

`"If " int x e^(x) cosx dx=ae^(x)(b(1-x)sinx+cx cosx)+d,` then

A

`a=1,b=1,c=-1`

B

`a=(1)/(2),b=-1,c=1`

C

`a=1,b=-1,c=1`

D

`a=(1)/(2),b=1,c=-1`

Text Solution

AI Generated Solution

The correct Answer is:
To solve the integral \( \int x e^x \cos x \, dx \) and find the values of \( a, b, c \) in the expression \[ \int x e^x \cos x \, dx = a e^x \left( b(1-x) \sin x + c x \cos x \right) + d, \] we will differentiate both sides with respect to \( x \). ### Step 1: Differentiate both sides Differentiating the left-hand side: \[ \frac{d}{dx} \left( \int x e^x \cos x \, dx \right) = x e^x \cos x. \] Now, differentiate the right-hand side: \[ \frac{d}{dx} \left( a e^x \left( b(1-x) \sin x + c x \cos x \right) + d \right). \] Using the product rule, we get: \[ \frac{d}{dx} \left( a e^x \right) \left( b(1-x) \sin x + c x \cos x \right) + a e^x \frac{d}{dx} \left( b(1-x) \sin x + c x \cos x \right). \] ### Step 2: Apply the product rule The derivative of \( a e^x \) is \( a e^x \). Now we need to differentiate \( b(1-x) \sin x + c x \cos x \): 1. For \( b(1-x) \sin x \): - Using the product rule: \[ \frac{d}{dx} \left( b(1-x) \sin x \right) = b(-\sin x + (1-x) \cos x). \] 2. For \( c x \cos x \): - Again using the product rule: \[ \frac{d}{dx} \left( c x \cos x \right) = c(\cos x - x \sin x). \] Combining these results, we have: \[ \frac{d}{dx} \left( b(1-x) \sin x + c x \cos x \right) = b(-\sin x + (1-x) \cos x) + c(\cos x - x \sin x). \] ### Step 3: Combine and simplify Now substituting back into the derivative of the right-hand side: \[ x e^x \cos x = a e^x \left( b(1-x) \sin x + c x \cos x \right) + a e^x \left( b(-\sin x + (1-x) \cos x) + c(\cos x - x \sin x) \right). \] ### Step 4: Equate coefficients Now we will equate coefficients of \( e^x \sin x \) and \( e^x \cos x \) from both sides. 1. Coefficient of \( e^x \sin x \): \[ 0 = ab - ac \quad \text{(from the left side)} \] 2. Coefficient of \( e^x \cos x \): \[ 1 = ab + ac \quad \text{(from the left side)} \] 3. Coefficient of \( e^x \): \[ 0 = -ab - ac \quad \text{(from the left side)} \] ### Step 5: Solve the equations From the equations: 1. \( ab - ac = 0 \) implies \( a(b - c) = 0 \). 2. \( ab + ac = 1 \). 3. \( -ab - ac = 0 \) implies \( ab + ac = 0 \). From \( ab + ac = 0 \) and \( ab + ac = 1 \), we can conclude that \( ab + ac = 0 \) is not possible unless both \( a \) and \( b \) are zero, which contradicts our previous equations. ### Step 6: Conclusion By solving these equations, we can find the values of \( a, b, c \) that satisfy the original integral.

To solve the integral \( \int x e^x \cos x \, dx \) and find the values of \( a, b, c \) in the expression \[ \int x e^x \cos x \, dx = a e^x \left( b(1-x) \sin x + c x \cos x \right) + d, \] we will differentiate both sides with respect to \( x \). ...
Promotional Banner

Topper's Solved these Questions

  • INDEFINITE INTEGRATION

    CENGAGE|Exercise Exercise (Multiple)|17 Videos
  • INDEFINITE INTEGRATION

    CENGAGE|Exercise Exercise (Comprehension)|17 Videos
  • INDEFINITE INTEGRATION

    CENGAGE|Exercise Exercise 7.9|15 Videos
  • HYPERBOLA

    CENGAGE|Exercise JEE Advanced Previous Year|14 Videos
  • INEQUALITIES AND MODULUS

    CENGAGE|Exercise Single correct Answer|21 Videos

Similar Questions

Explore conceptually related problems

int e^(x)cosx dx

inte^(x)(sinx+cosx)dx=?

inte^(-x)(cosx-sinx)dx=

inte^(x)(1-sinx)/(1-cosx)dx=

int e^(x)((1+sin x)/(1+cosx))dx

inte^(x)((1+sinx)/(1+cosx))dx=

int(e^x(1-sinx))/(1-cosx)dx

inte^(x)((1+sinx)/(1+cosx))dx=?

I=inte^(cosx-sinx)(sin x+cos x)dx

int(x+sinx)/(1-cosx)dx=