Home
Class 12
MATHS
int x sinx sec^(3)x dx is equal to...

`int x sinx sec^(3)x dx` is equal to

A

`(1)/(2)[ sec^(2)x-tanx]+c`

B

`(1)/(2)[x sec^(2)x-tanx]+c`

C

`(1)/(2)[x sec^(2)x+tanx]+c`

D

`(1)/(2)[ sec^(2)x+tanx]+c`

Text Solution

AI Generated Solution

The correct Answer is:
To solve the integral \( \int x \sin x \sec^3 x \, dx \), we will follow a systematic approach. ### Step-by-Step Solution: 1. **Rewrite the Integral**: \[ \int x \sin x \sec^3 x \, dx \] We can express \( \sec^3 x \) as \( \sec^2 x \cdot \sec x \): \[ = \int x \sin x \sec^2 x \sec x \, dx \] 2. **Use Trigonometric Identity**: Recall that \( \sec x = \frac{1}{\cos x} \) and \( \tan x = \frac{\sin x}{\cos x} \). Thus, we can rewrite \( \sin x \sec^2 x \) as: \[ \sin x \sec^2 x = \tan x \sec x \] Therefore, the integral becomes: \[ = \int x \tan x \sec^2 x \, dx \] 3. **Integration by Parts**: We will use integration by parts where we let: \[ u = x \quad \text{and} \quad dv = \tan x \sec^2 x \, dx \] Then, we need to find \( du \) and \( v \): \[ du = dx \] To find \( v \), we integrate \( dv \): \[ v = \int \tan x \sec^2 x \, dx \] The integral of \( \tan x \sec^2 x \) is \( \frac{1}{2} \tan^2 x \). 4. **Apply Integration by Parts Formula**: The integration by parts formula is: \[ \int u \, dv = uv - \int v \, du \] Substituting our values: \[ = x \cdot \frac{1}{2} \tan^2 x - \int \frac{1}{2} \tan^2 x \, dx \] 5. **Integrate \( \tan^2 x \)**: We can express \( \tan^2 x \) using the identity: \[ \tan^2 x = \sec^2 x - 1 \] Thus, \[ \int \tan^2 x \, dx = \int (\sec^2 x - 1) \, dx = \int \sec^2 x \, dx - \int 1 \, dx \] The integral of \( \sec^2 x \) is \( \tan x \), and the integral of 1 is \( x \): \[ = \tan x - x \] 6. **Substituting Back**: Now, substituting back into our integration by parts result: \[ = x \cdot \frac{1}{2} \tan^2 x - \frac{1}{2} \left( \tan x - x \right) \] Simplifying: \[ = \frac{1}{2} x \tan^2 x - \frac{1}{2} \tan x + \frac{1}{2} x + C \] 7. **Final Result**: Thus, the final result of the integral is: \[ \int x \sin x \sec^3 x \, dx = \frac{1}{2} x \tan^2 x - \frac{1}{2} \tan x + \frac{1}{2} x + C \]

To solve the integral \( \int x \sin x \sec^3 x \, dx \), we will follow a systematic approach. ### Step-by-Step Solution: 1. **Rewrite the Integral**: \[ \int x \sin x \sec^3 x \, dx \] ...
Promotional Banner

Topper's Solved these Questions

  • INDEFINITE INTEGRATION

    CENGAGE|Exercise Exercise (Multiple)|17 Videos
  • INDEFINITE INTEGRATION

    CENGAGE|Exercise Exercise (Comprehension)|17 Videos
  • INDEFINITE INTEGRATION

    CENGAGE|Exercise Exercise 7.9|15 Videos
  • HYPERBOLA

    CENGAGE|Exercise JEE Advanced Previous Year|14 Videos
  • INEQUALITIES AND MODULUS

    CENGAGE|Exercise Single correct Answer|21 Videos

Similar Questions

Explore conceptually related problems

int sec^3x dx

What int sec x^(@) dx is equal to ?

int sec^(4)x cosec^(2)x dx is equal to

int x^(2)sinx^(3)dx

The integral int_(pi//6)^(pi//3)sec^(2//3)x " cosec"^(4//3)x dx is equal to

int sec x^(@)dx equals to

int e^(tan x) (sec^(2) x + sec^(3) x sin x ) dx is equal to

What is int tan^(2) x sec^(4) x dx equal to ?