Home
Class 12
MATHS
int e^(tan^-1x)(1+x+x^2) d(cot^-1x) is e...

`int e^(tan^-1x)(1+x+x^2) d(cot^-1x)` is equal to

A

` - e^(tan^(-1)x)+c`

B

` e^(tan^(-1)x)+c`

C

`-x e^(tan^(-1)x)+c`

D

`x e^(tan^(-1)x)+c`

Text Solution

Verified by Experts

The correct Answer is:
C

`I=int e^(tan^(-1)x) (1+x+x^(2))(-((1)/(1+x^(2)))dx)`
`= -int e^(tan^(-1)x)(1+(x)/(1+x^(2)))dx`
`= -int e^(tan^(-1)x)dx-int x(e^(tan^(-1)x))/(1+x^(2))dx`
`= -int e^(tan^(-1)x)dx-x e^(tan^(-1)x)+int e^(tan^(-1)x) dx+C`
`= -x e^(tan^(-1)x)+C`
Promotional Banner

Topper's Solved these Questions

  • INDEFINITE INTEGRATION

    CENGAGE|Exercise Exercise (Multiple)|17 Videos
  • INDEFINITE INTEGRATION

    CENGAGE|Exercise Exercise (Comprehension)|17 Videos
  • INDEFINITE INTEGRATION

    CENGAGE|Exercise Exercise 7.9|15 Videos
  • HYPERBOLA

    CENGAGE|Exercise JEE Advanced Previous Year|14 Videos
  • INEQUALITIES AND MODULUS

    CENGAGE|Exercise Single correct Answer|21 Videos

Similar Questions

Explore conceptually related problems

int e^(tan^(-1)x)(1+x+x^(2))d(cot^(-1)x) is equal to

int e^(tan^(-1)x)(1+x+x^(2))d(cot^(-1)x) is equal to -e^(tan^(-1)x)+c(b)e^(tan^(-1)x)+c-xe^(tan^(-1)x)+c(d)xe^(tan-1)x+c

tan(cot^(-1)x) is equal to

int(e^(tan^(-1)x))/(1+x^(2))dx

int(e^(tan^(-1)x))/(1+x^(2))dx

If 2int_(0)^(1) tan^(-1)xdx=int_(2)^(1)cot^(-1)(1-x+x^(2))dx . Then int_(0)^(1) tan^(-1)(1-x+x^(2))dx is equal to

int((tan^(-1)x)^(3))/(1+x^(2))dx is equal to

int e^(tan^(-1)x)((1)/(1+x^(2)))dx=

int(e^(a tan^(-1)x))/(1+x^(2))dx

int(e^(a tan^(-1)x))/(1+x^(2))dx