Home
Class 12
MATHS
The value of integral inte^x(1/(sqrt(1+x...

The value of integral `inte^x(1/(sqrt(1+x^2))+1/(sqrt((1+x^2)^5)))dxi se q u a lto` `e^x(1/(sqrt(1+x^2))+1/(sqrt((1+x^2)^3)))+c` `e^x(1/(sqrt(1+x^2))-1/(sqrt((1+x^2)^3)))+c` `e^x(1/(sqrt(1+x^2))+1/(sqrt((1+x^2)^5)))+c` none of these

A

` e^(x)((1)/(sqrt(1+x^(2)))+(x)/(sqrt((1+x^(2))^(3))))+c`

B

` e^(x)((1)/(sqrt(1+x^(2)))-(x)/(sqrt((1+x^(2))^(3))))+c`

C

` e^(x)((1)/(sqrt(1+x^(2)))+(x)/(sqrt((1+x^(2))^(5))))+c`

D

none of these

Text Solution

Verified by Experts

The correct Answer is:
A

` int e^(x)((1)/(sqrt(1+x^(2)))-(x)/(sqrt((1+x^(2))^(3)))+(x)/(sqrt((1+x^(2))^(3)))+(1-2x^(2))/(sqrt((1+x^(2))^(5))))`
` = e^(x)(1)/(sqrt(1+x^(2)))+e^(x)(x)/(sqrt((1+x^(2))^(3)))=e^(x)((1)/(sqrt(1+x^(2)))+(x)/(sqrt((1+x^(2))^(3))))+C`
Using ` int e^(x)(f(x)+f'(x))dx, " we get " e^(x)f(x)+c`
Promotional Banner

Topper's Solved these Questions

  • INDEFINITE INTEGRATION

    CENGAGE|Exercise Exercise (Multiple)|17 Videos
  • INDEFINITE INTEGRATION

    CENGAGE|Exercise Exercise (Comprehension)|17 Videos
  • INDEFINITE INTEGRATION

    CENGAGE|Exercise Exercise 7.9|15 Videos
  • HYPERBOLA

    CENGAGE|Exercise JEE Advanced Previous Year|14 Videos
  • INEQUALITIES AND MODULUS

    CENGAGE|Exercise Single correct Answer|21 Videos

Similar Questions

Explore conceptually related problems

The value of integral int e^(x)((1)/(sqrt(1+x^(2)))+(1)/(sqrt((1+x^(2))^(5))))dx is equal to e^(x)((1)/(sqrt(1+x^(2)))+(1)/(sqrt((1+x^(2))^(3))))+ce^(x)((1)/(sqrt(1+x^(2)))-(1)/(sqrt((1+x^(2))^(5))))+ce^(x)((1)/(sqrt(1+x^(2)))+(1)/(sqrt((1+x^(2))^(5))))+c none of these

(v)int e^x(sqrt(1-x^(2))-(x)/(sqrt(1-x^2))dx)

int e^(x)(x+sqrt(1+x^(2)))(1+(1)/(sqrt(1+x^(2))))dx=

int(e^x[1+sqrt(1-x^2)sin^-1x])/sqrt(1-x^2)dx

int e^(x)[(1)/(sqrt(1+x^(2)))+(1-2x^(2))/(sqrt((1+x^(2))^(5)))]dx

The value of int(log_(e)(x+sqrt(x^2)+1))/(sqrt(x^(2)+1))dx is

The value of the integral int_(1)^(sqrt(2) +1) ((x^2 -1)/(x^2+1)) (1)/(sqrt(1 +x^4)) dx is

int(sqrt(1-x^(2))-x)/(sqrt(1-x^(2))(1+xsqrt(1-x^(2))))dx is

if tan^(-1){(sqrt(1+x^(2))-sqrt(1-x^(2)))/(sqrt(1+x^(2))+sqrt(1-x^(2)))}=alpha then