Home
Class 12
MATHS
inte^(tanx)(sinx-secx)dx is equal to...

`inte^(tanx)(sinx-secx)dx` is equal to

A

`e^(tanx)cosx +C`

B

`e^(tanx)sinx +C`

C

`-e^(tanx)cosx +C`

D

`e^(tanx)sec x +C`

Text Solution

Verified by Experts

The correct Answer is:
C

`I=inte^(tanx)(sinx-secx)dx`
`=int sinx e^(tanx)dx-int secx e^(tanx)dx`
`=-e^(tanx)cosx+int cos x e^(tanx)sec^(2)x dx-int sec x e^(tanx) dx`
`= -cosx e^(tanx) +C`
Promotional Banner

Topper's Solved these Questions

  • INDEFINITE INTEGRATION

    CENGAGE|Exercise Exercise (Multiple)|17 Videos
  • INDEFINITE INTEGRATION

    CENGAGE|Exercise Exercise (Comprehension)|17 Videos
  • INDEFINITE INTEGRATION

    CENGAGE|Exercise Exercise 7.9|15 Videos
  • HYPERBOLA

    CENGAGE|Exercise JEE Advanced Previous Year|14 Videos
  • INEQUALITIES AND MODULUS

    CENGAGE|Exercise Single correct Answer|21 Videos

Similar Questions

Explore conceptually related problems

inte^(-x)(1-tanx)secx dx is equal to

int(sinx)/(sinx-a)dx is equal to

inte^(sinx)((sinx+1)/(secx))dx is equal to

int(In(tanx))/(sinx cosx)dx " is equal to "

int(sqrt(tanx))/(sinxcosx)dx is equal to.

The value of int("ln(tanx))/(sinxcosx) dx is equal to

The value of int(sqrt(tanx)/(sinx cosx)) dx is equal to

int(x+tanx)/(x.sinx.secx)dx=

int(tanx)/(secx+tanx)dx=