Home
Class 12
MATHS
int(cosec^2x-2005)/cos^[2005]x.dx...

`int(cosec^2x-2005)/cos^[2005]x.dx`

A

`(cotx)/((cosx)^(2005))+c`

B

`(tan x)/((cosx)^(2005))+c`

C

`(-(tan x))/((cosx)^(2005))+c`

D

none of these

Text Solution

Verified by Experts

The correct Answer is:
D

`int("cosec"^(2)x-2005)/(cos^(2005)x)dx`
`=int(cotx)^(-2005)"cosec"^(2)xdx-2005 int (dx)/(cos^(2005)x)`
`=(cosx)^(-2005)(-cot x)-int (-2005)(cosx)^(-2006)(-sinx)(-cotx)dx-2005int(dx)/(cos^(2005)x)`
`= -(cotx)/((cosx)^(2005))+C`
Promotional Banner

Topper's Solved these Questions

  • INDEFINITE INTEGRATION

    CENGAGE|Exercise Exercise (Multiple)|17 Videos
  • INDEFINITE INTEGRATION

    CENGAGE|Exercise Exercise (Comprehension)|17 Videos
  • INDEFINITE INTEGRATION

    CENGAGE|Exercise Exercise 7.9|15 Videos
  • HYPERBOLA

    CENGAGE|Exercise JEE Advanced Previous Year|14 Videos
  • INEQUALITIES AND MODULUS

    CENGAGE|Exercise Single correct Answer|21 Videos

Similar Questions

Explore conceptually related problems

int(cos ec^(2)x-2005)/(cos^(2005)x)*dx

int(csc^(2)x-2005)/(cos^(205)x)dx is equal to (cot x)/((cos x)^(2005))+c(b)(tan x)/((cos x)^(2005)+c(-(tan x))/((cos x)^(2005))+c(d) none of these )

The value of the integral int("cosec"^(2)x-2019)/(cos^(2019)x)dx is equal to (where C is the constant of integration)

Evaluate : (i) int(sinx)/((1-4cos^(2)x))dx (ii) int("cosec"^(2)x)/((1-cot^(2)x))dx

int (sec^(2)x)/(cosec^(2)x) dx

int ("cosec"^(2)x)/((1-cot^(2)x))dx=?

int"cosec"^(2)(2x+5)dx

int cosec^2 x dx=- cot x

int cosec(2x-a)*cosec(2x-b)dx=

int (sec^(2) x)/(" cosec "^(2)x) dx