Home
Class 12
MATHS
int e^(sin^(-1)x)((log(e)x)/(sqrt(1-x^(2...

`int e^(sin^(-1)x)((log_(e)x)/(sqrt(1-x^(2)))+(1)/(x))dx` is equal to

A

`log_(e)x*e^(sin^(-1)x)+c`

B

`(e^(sin^(-1)x))/(x)+c`

C

`-log_(e)x*e^(sin^(-1)x)+c`

D

`e^(sin^(-1)x)(log_(e)x+(1)/(x))+c`

Text Solution

Verified by Experts

The correct Answer is:
A

`int e^(sin^(-1)x)((log_(e)x)/(sqrt(1-x^(2)))+(1)/(x))dx`
`=int e^(sin^(-1)x)(log_(e)x)/(sqrt(1-x^(2)))dx+int(e^("sin"^(-1)x))/(x)dx`
`=log_(e)x int (e^(sin^(-1)x))/(sqrt(1-x^(2)))dx=int((log_(e)x)'int(e^(sin^(-1)x))/(sqrt(1-x^(2))))dx+int (e^(sin^(-1)x))/(x)dx`
`=log_(e)x*e^(sin^(-1)x)-int(1)/(x)e^(sin^(-1)x)dx+int (e^(sin^(-1)x))/(x)dx`
`=log_(e)x*e^(sin^(-1)x)+c`
Promotional Banner

Topper's Solved these Questions

  • INDEFINITE INTEGRATION

    CENGAGE|Exercise Exercise (Multiple)|17 Videos
  • INDEFINITE INTEGRATION

    CENGAGE|Exercise Exercise (Comprehension)|17 Videos
  • INDEFINITE INTEGRATION

    CENGAGE|Exercise Exercise 7.9|15 Videos
  • HYPERBOLA

    CENGAGE|Exercise JEE Advanced Previous Year|14 Videos
  • INEQUALITIES AND MODULUS

    CENGAGE|Exercise Single correct Answer|21 Videos

Similar Questions

Explore conceptually related problems

int e^(sin^(-1)x)[1+(x)/(sqrt(1-x^(2)))]dx

int e^(x)(sin^(-1)x+(1)/(sqrt(1-x^(2))))dx

The value of the integral int_(-1)^(1)log_(e)(sqrt(1-x)+sqrt(1+x))dx is equal to :

int(log_(e)x)/((1+x)^(2))dx

int(log_(e)x)/((1+x)^(2))dx

int x^(x)(1+log_(e)x)dx

int(1)/(x)(log_(ex)e)dx is equal to

int sqrt((e^(x)-1)/(e^(x)+1))dx is equal to

int(e^(x)(x log x+1))/(x)dx is equal to

inte^(-x)log(e^x+1)dx