Home
Class 12
MATHS
IfI(m , n)=intcos^m xsinn xdx ,t h e n7I...

`IfI_(m , n)=intcos^m xsinn xdx ,t h e n7I_(4,3)-4I_(3,2)i se q u a lto` constant (b) `-cos^2x+C` `-cos^4xcos3x+C` (d) `cos7x-cos4x+C`

A

constant

B

`-cos^(2)x+C`

C

`-cos^(4)x cos 3x+C`

D

`cos 7x-cos 4x+C`

Text Solution

Verified by Experts

The correct Answer is:
C

`I_(4,3)=int cos^(4)x sin3x dx`
Integrating by parts, we have
`I_(4,3)= -(cos3xcos^(4)x)/(3)-(4)/(3)intcos^(3)xsinx cos3x dx`
But `sinx cos3x= -sin2x+sin3x cosx.` So,
`I_(4,3)= -(cosx cos^(4)x)/(3)+(4)/(3)intcos^(3)x sin 2x dx-(4)/(3)intcos^(4)x sin3xdx+C`
`= -(cos3xcos^(4)x)/(3)+(4)/(3)I_(3,2)-(4)/(3)I_(4,3)+C`
Therefore, `(7)/(3)I_(4,3)-(4)/(3)I_(3,2)= -(cos3x cos^(3)x)/(3)+C`
or `7I_(4,3)-4I_(3,2)= -cos 3x cos^(4)x+C`
Promotional Banner

Topper's Solved these Questions

  • INDEFINITE INTEGRATION

    CENGAGE|Exercise Exercise (Multiple)|17 Videos
  • INDEFINITE INTEGRATION

    CENGAGE|Exercise Exercise (Comprehension)|17 Videos
  • INDEFINITE INTEGRATION

    CENGAGE|Exercise Exercise 7.9|15 Videos
  • HYPERBOLA

    CENGAGE|Exercise JEE Advanced Previous Year|14 Videos
  • INEQUALITIES AND MODULUS

    CENGAGE|Exercise Single correct Answer|21 Videos

Similar Questions

Explore conceptually related problems

IfI_(m,n)=int cos^(m)x sin nxdx, then 7I_(4,3)-4I_(3,2) i se q u a lto (a)constant (b)-cos^(2)x+C-cos^(4)x cos3x+C(d)cos7x-cos4x+C

int e^(-x)cos2x cos4xdx

If I_(n)=int cos^(n)xdx, then I_(7)-(cos^(6)x sin x)/(7)=

I= int cos 4 x cos 7 x dx .

Prove that 2cosx. Cos 3x- 2cos 5x. Cos 7x- cos 4x + cos12x=0 .

If I_n=intsin^n xdx ; n in N , then 5I_4-6I_6 is equal to 1. sinx(cosx)^5+c 2. sin2xcos2x+c 3. (sin2x)/8(cos^2 2x+1-2cos2x)+c 4. (sin2x)/8(cos^2 2x+1+2cos2x)+c

IfI_(n)=int_(0)^( pi)e^(x)(sin x)^(n)dx,then(I_(3))/(I_(1)) is equal to (3)/(5)(b)(1)/(5)(c)1(d)(2)/(5)

(i) int sin^(3)x cos^(4)xdx

If I_(m"," n)=int cos^(m)x*cos nx dx , show that (m+n)I_(m","n)=cos^(m)x*sin nx+m I_((m-1","n-1))

Evaluate: (i) int sin3x cos4xdx (ii) int cos2x cos4xdx