Home
Class 12
MATHS
Euler's substitution: Integrals of th...

Euler's substitution:
Integrals of the form `intR(x, sqrt(ax^(2)+bx+c))dx` are claculated with the aid of one of the following three Euler substitutions:
i. `sqrt(ax^(2)+bx+c)=t+-x sqrt(a)if a gt 0`
ii. `sqrt(ax^(2)+bx+c)=tx+-x sqrt(c)if c gt 0`
iii. `sqrt(ax^(2)+bx+c)=(x-a)t if ax^(2)+bx+c=a(x-a)(x-b)` i.e., if `alpha` is real root of `ax^(2)+bx+c=0`
Which of the following functions does not appear in the primitive of `(1)/(1+sqrt(x^(2)+2x+2))` if t is a function of x ?

A

`log_(e)|t+1|`

B

`log_(e)|t+2|`

C

`(1)/(t+2)`

D

none of these

Text Solution

Verified by Experts

The correct Answer is:
D

Here, `a=1 gt 0.` Therefore, we make the substitution `sqrt(x^(2)+2x+2)=t-x.` Squaring both sides, we get
`2x+2tx=t^(2)-2 or x=(t^(2)-2)/(2(1+t)) or dx=(t^(2)+2t+2)/(2(1+t)^(2))dt`
`1+sqrt(x^(2)+2x+2)=1+t-(t^(2)-2)/(2(1+t))=(t^(2)+4t+4)/(2(1+t)).`
Substituting into the integral, we get
`I=int(2(1+t)(t^(2)+2t+2))/((t^(2)+4t+4)2(1+t)^(2))dt=int((t^(2)+2t+2)dt)/((1+t)(t+2)^(2))`
Now, let us expand the obtained proper rational fraction into partial fractions:
`(t^(2)+2t+2)/((t+1)(t+2)^(2))=(A)/(t+1)+(B)/(t+2)+(D)/((t+2)^(2)).`
Promotional Banner

Topper's Solved these Questions

  • INDEFINITE INTEGRATION

    CENGAGE|Exercise Exercise (Matrix)|4 Videos
  • INDEFINITE INTEGRATION

    CENGAGE|Exercise Exercise (Numerical)|10 Videos
  • INDEFINITE INTEGRATION

    CENGAGE|Exercise Exercise (Multiple)|17 Videos
  • HYPERBOLA

    CENGAGE|Exercise JEE Advanced Previous Year|14 Videos
  • INEQUALITIES AND MODULUS

    CENGAGE|Exercise Single correct Answer|21 Videos

Similar Questions

Explore conceptually related problems

Euler's substitution: Integrals of the form intR(x, sqrt(ax^(2)+bx+c))dx are claculated with the aid of one of the following three Euler substitutions: i. sqrt(ax^(2)+bx+c)=t+-x sqrt(a)if a gt 0 ii. sqrt(ax^(2)+bx+c)=tx+-x sqrt(c)if c gt 0 iii. sqrt(ax^(2)+bx+c)=(x-a)t if ax^(2)+bx+c=a(x-a)(x-b) i.e., if alpha is real root of ax^(2)+bx+c=0 int(xdx)/((sqrt(7x-10-x^(2)))^(3)) can be evaluated by substituting for x as

Integral of the form (px+q)sqrt(ax^(2)+bx+c)dx

Integral of the form sqrt(ax^(2)+bx+cdx)

sqrt(ax^2+bx+c)

int sqrt(x)(ax^(2)+bx+c)dx

Integral reducible to form: (1)/(sqrt(ax^(2)+bx+c))dx

Integral of F(x)/(px+q)sqrt(ax^(2)+bx+c)dx

Integral of F(x)/(px^(2)+qx+r)sqrt(ax^(2)+bx+c)dx

Integration of (1)/(sqrt(ax^(2)+bx+c))dx

CENGAGE-INDEFINITE INTEGRATION-Exercise (Comprehension)
  1. y= f(x) is a polynomial function passing through point (0, 1) and whic...

    Text Solution

    |

  2. y= f(x) is a polynomial function passing through point (0, 1) and whic...

    Text Solution

    |

  3. y= f(x) is a polynomial function passing through point (0, 1) and whic...

    Text Solution

    |

  4. If A is a square matrix and e^a is defined as e^A=1+A^2/(2!)+A^3/(3!)....

    Text Solution

    |

  5. If A is a square matrix and e^a is defined as e^A=1+A^2/(2!)+A^3/(3!)....

    Text Solution

    |

  6. If A is a square matrix and e^a is defined as e^A=1+A^2/(2!)+A^3/(3!)....

    Text Solution

    |

  7. Euler's substitution: Integrals of the form intR(x, sqrt(ax^(2)+bx+...

    Text Solution

    |

  8. Euler's substitution: Integrals of the form intR(x, sqrt(ax^(2)+bx+...

    Text Solution

    |

  9. Euler's substitution: Integrals of the form intR(x, sqrt(ax^(2)+bx+...

    Text Solution

    |

  10. Let f(x)=int x^2/((1+x^2)(1+sqrt(1+x^2)))dx and f(0)=0 then f(1) is

    Text Solution

    |

  11. Let f(x)=int x^2/((1+x^2)(1+sqrt(1+x^2)))dx and f(0)=0 then f(1) is

    Text Solution

    |

  12. If int(x(x-1))/((x^(2)+1)(x+1)sqrt(x^(3)+x^(2)+x))dx =(1)/(2)log(e)...

    Text Solution

    |

  13. If int(x(x-1))/((x^(2)+1)(x+1)sqrt(x^(3)+x^(2)+x))dx =(1)/(2)log(e)...

    Text Solution

    |

  14. If a function satisfies the relation f(x) f''(x)-f(x)f'(x)=(f'(x))^(2)...

    Text Solution

    |

  15. If a function satisfies the relation f(x) f''(x)-f(x)f'(x)=(f'(x))^(2)...

    Text Solution

    |

  16. Consider two differentiable functions f(x),g(x) satisfying 6intf(x)...

    Text Solution

    |

  17. Consider two differentiable functions f(x),g(x) satisfying 6intf(x)...

    Text Solution

    |