Home
Class 12
MATHS
If the incircle of the Delta ABC touches...

If the incircle of the `Delta ABC` touches its sides at `L`, `M` and `N` as shown in the figure and if `x`, `y`, `z` be thecircumradii of the triangles `MIN`, `NIL` and `LIM` respectively, where `I` is the incentre, then the product `xyz` is equal to:
(A) `R r^2`         (B)` r R^2`
(C) `1/2R r^2 `         (D) `1/2r R^2`

Text Solution

Verified by Experts

In the given figure, ANIM is a cyclic quadrilateral

Also, AI is the diameter of circumcircle MNI
`:. AI = 2x`. Then
`cosec. (A)/(2) = (2x)/(r)`
`rArr x = (r)/(2sin.(A)/(2)), y = (r)/(2sin.(B)/(2)), z = (r)/(2sin.(C)/(2))`
`rArr xyz = (r_(3))/(8 sin.(A)/(2) sin.(B)/(2) sin.(C)/(2)) = (r^(3))/(2(r)/(R)) = (r^(2)R)/(2)`
Promotional Banner

Topper's Solved these Questions

  • PROPERTIES AND SOLUTIONS OF TRIANGLE

    CENGAGE|Exercise Exercise 5.9|5 Videos
  • PROPERTIES AND SOLUTIONS OF TRIANGLE

    CENGAGE|Exercise Exercise 5.10|8 Videos
  • PROPERTIES AND SOLUTIONS OF TRIANGLE

    CENGAGE|Exercise Exercise 5.7|4 Videos
  • PROGRESSION AND SERIES

    CENGAGE|Exercise ARCHIVES (MATRIX MATCH TYPE )|1 Videos
  • PROPERTIES OF TRIANGLE, HEIGHT AND DISTANCE

    CENGAGE|Exercise Question Bank|32 Videos

Similar Questions

Explore conceptually related problems

The number of solutions of z^2+bar z=0 is (a) 1           (b) 2 (c) 3           (d) 4

If x ÷ 1 = 8 , then x is equal to ( a )   8   ( b )   1   ( c )   -8   ( d )   -1  

If y - 9 = ( - 4 ) , then y is equal to : ( a )   3   ( b )   4   ( c )   5   (d )   7  

If ( -6 ) ÷ x = 1 , then x is equal to (A)   -6   (B)   6   (C)   -1/6   (D)   7

Domain of [ x ] + x is : 1)   R   2 )   z   3 ) R - 2

Find the value of [ 8^(-4/3) ÷ 2^-2 ]^(1/2) ( a )  1/2   ( b )   2   ( c )   1/4   ( d )  4

If f(x) = { x , x ( 1 )  1   ( 2 )   4/3   ( 3 )   5/3   ( 4 )   5/2  

Find the value of ( 1+ 1/iota )^4 is : ( a )   0   ( b )  -4   ( c )   4   ( d )   3

Find the value of | [ y , y-1 ],[ y +1 ,y ]| (a)   2   (b)   3   ( c )   0   (d)   1

Find the value of ( 1 - iota )^n ( 1 - 1/iota )^n (A)  2^n   ( B )   1/2^n   ( c )   0   ( D )   1