Home
Class 12
MATHS
If sinA=sin^2B and 2cos^2A=3cos^2B then ...

If `sinA=sin^2B and 2cos^2A=3cos^2B` then the triangle ABC is

A

right angled

B

obtuse angled

C

ospsceles

D

equilateral

Text Solution

AI Generated Solution

The correct Answer is:
To solve the problem, we need to analyze the given equations and find the angles of triangle ABC based on the conditions provided. ### Step-by-Step Solution: 1. **Given Equations**: - \( \sin A = \sin^2 B \) - \( 2 \cos^2 A = 3 \cos^2 B \) 2. **Express Cosine in Terms of Sine**: Using the identity \( \cos^2 \theta = 1 - \sin^2 \theta \): - From \( 2 \cos^2 A = 3 \cos^2 B \), we can rewrite it as: \[ 2(1 - \sin^2 A) = 3(1 - \sin^2 B) \] - This simplifies to: \[ 2 - 2 \sin^2 A = 3 - 3 \sin^2 B \] - Rearranging gives: \[ 2 \sin^2 A - 3 \sin^2 B + 1 = 0 \] 3. **Substituting \( \sin A \)**: Since \( \sin A = \sin^2 B \), we can substitute this into the equation: - Let \( x = \sin B \). Then \( \sin A = x^2 \). - Substitute \( \sin A \) into the equation: \[ 2(x^2)^2 - 3x^2 + 1 = 0 \] - This simplifies to: \[ 2x^4 - 3x^2 + 1 = 0 \] 4. **Letting \( y = x^2 \)**: - We can let \( y = x^2 \), then the equation becomes: \[ 2y^2 - 3y + 1 = 0 \] 5. **Solving the Quadratic Equation**: - Using the quadratic formula \( y = \frac{-b \pm \sqrt{b^2 - 4ac}}{2a} \): \[ y = \frac{3 \pm \sqrt{(-3)^2 - 4 \cdot 2 \cdot 1}}{2 \cdot 2} = \frac{3 \pm \sqrt{9 - 8}}{4} = \frac{3 \pm 1}{4} \] - This gives us: \[ y = 1 \quad \text{or} \quad y = \frac{1}{2} \] 6. **Finding \( \sin B \)**: - Since \( y = \sin^2 B \): - If \( y = 1 \), then \( \sin B = 1 \) which implies \( B = 90^\circ \) (not possible in a triangle). - If \( y = \frac{1}{2} \), then \( \sin B = \frac{1}{\sqrt{2}} \) which implies \( B = 45^\circ \). 7. **Finding \( \sin A \)**: - From \( \sin A = \sin^2 B \): \[ \sin A = \left(\frac{1}{\sqrt{2}}\right)^2 = \frac{1}{2} \] - This implies \( A = 30^\circ \). 8. **Finding Angle C**: - The sum of angles in a triangle is \( 180^\circ \): \[ C = 180^\circ - A - B = 180^\circ - 30^\circ - 45^\circ = 105^\circ \] ### Conclusion: The angles of triangle ABC are: - \( A = 30^\circ \) - \( B = 45^\circ \) - \( C = 105^\circ \) Since one angle is greater than \( 90^\circ \), triangle ABC is an **obtuse triangle**.

To solve the problem, we need to analyze the given equations and find the angles of triangle ABC based on the conditions provided. ### Step-by-Step Solution: 1. **Given Equations**: - \( \sin A = \sin^2 B \) - \( 2 \cos^2 A = 3 \cos^2 B \) ...
Promotional Banner

Topper's Solved these Questions

  • TRIGONOMETRIC FUNCTIONS

    CENGAGE|Exercise Exercise (Multiple)|17 Videos
  • TRIGONOMETRIC FUNCTIONS

    CENGAGE|Exercise Exercise (Comprehension)|11 Videos
  • TRIGONOMETRIC FUNCTIONS

    CENGAGE|Exercise Exercise 2.6|9 Videos
  • TRIGONOMETRIC EQUATIONS

    CENGAGE|Exercise Archives (Matrix Match Type)|1 Videos
  • TRIGONOMETRIC RATIOS AND TRANSFORMATION FORMULAS

    CENGAGE|Exercise Matrix Match Type|1 Videos

Similar Questions

Explore conceptually related problems

If sinA=sin^2Band2cos^2A=3cos^2B then the triangle ABC is right angled (b) obtuse angled (c)isosceles (d) equilateral

If sin A=sin^(2)Band2cos^(2)A=3cos^(2)B then the triangle ABC is right angled (b) obtuse angled (c)isosceles (d) equilateral

If a triangle ABC, sin A = sin^(2) B and 2 cos^(2)A = 3 cos^(2)B , then the Delta ABC is :

If A and B are acute angles such that sinA=sin^(2)B,2cos^(2)A=3cos^(2)B then B equal to

If sin2A+sin2B+sin2C+2cos(A-B)+2cos(A+B)=4 ,then Delta ABC is

In triangle ABC if 2sin^(2)C=2+cos2A+cos2B , then prove that triangle is right angled.

In sinA=sinB and cos A=cos B , then prove that sin(A-B)/(2)=0

CENGAGE-TRIGONOMETRIC FUNCTIONS -Exercise (Single)
  1. If 1+sinx+sin^2x+sin^3x+oo is equal to 4+2sqrt(3),0<x<pi, then x is eq...

    Text Solution

    |

  2. The value of expression (2sin^2 91^0-1)(2sin^2 92^0-1)(2sin^2 180^0-1)...

    Text Solution

    |

  3. If sinA=sin^2B and 2cos^2A=3cos^2B then the triangle ABC is

    Text Solution

    |

  4. If sintheta+costheta=1/5and 0lethetaltpi" then "tantheta is

    Text Solution

    |

  5. If piltalphalt(3pi)/2lt" then "sqrt((1-cosalpha)/(1+cosalpha))+sqrt((1...

    Text Solution

    |

  6. If 0 < alpha < pi/ 6 then alpha(cosec alpha) is

    Text Solution

    |

  7. The least value of 2sin^2theta+3cos^2theta is

    Text Solution

    |

  8. The greatest value of sin^4theta+cos^4theta is

    Text Solution

    |

  9. If f(x)=sin^6x+cos^6x , then range of f(x) is [1/4,1] (b) [1/4,3/4] ...

    Text Solution

    |

  10. The minimum value of atan^2x+bcot^2x equals the maximum value of asin^...

    Text Solution

    |

  11. Range of f(theta)=cos^2theta(cos^2theta+1)+2 sin^2theta is

    Text Solution

    |

  12. If 0<theta<pi, then minimum value of 3sintheta+cos e c^3theta is 4 (b)...

    Text Solution

    |

  13. If thetaigt0" for "1lethetalenandtheta1+theta2+theta3+...+thetan=pithe...

    Text Solution

    |

  14. The set of values of lambda in R such that sin^2theta+costheta=lambda...

    Text Solution

    |

  15. Let A=sin^8theta+cos^14theta, " then "A("max") is

    Text Solution

    |

  16. Minimum value of y=256 sin^2x+324cosec^2x AA x inR is

    Text Solution

    |

  17. If a and b are positive quantities, (a gt b) find minimum positive val...

    Text Solution

    |

  18. If y=(sinx+cosecx)^2+(cosx+secx)^2 then the minimum value of y,AAx in ...

    Text Solution

    |

  19. The variable x satisfying the equation |sinxcosx|+sqrt(2+tan^2+cot^2x)...

    Text Solution

    |

  20. If the equation cof^4x-2cos e c^2x+a^2=0 has at least one solution, th...

    Text Solution

    |