Home
Class 12
MATHS
If abs(cos theta{sin theta+sqrt(sin^2the...

If `abs(cos theta{sin theta+sqrt(sin^2theta+sin^2alpha)})lek`, then the value of k

A

`sqrt(1+cos^2alpha)`

B

`sqrt(1+sin^2alpha)`

C

`sqrt(2+sin^2alpha)`

D

`sqrt(2+cos^2alpha)`

Text Solution

AI Generated Solution

The correct Answer is:
To solve the problem, we need to find the value of \( k \) such that: \[ |\cos \theta (\sin \theta + \sqrt{\sin^2 \theta + \sin^2 \alpha})| \leq k \] ### Step 1: Define the expression Let: \[ u = \cos \theta (\sin \theta + \sqrt{\sin^2 \theta + \sin^2 \alpha}) \] ### Step 2: Rearranging the expression We can rearrange the expression: \[ u - \sin \theta \cos \theta = \cos \theta \sqrt{\sin^2 \theta + \sin^2 \alpha} \] ### Step 3: Square both sides Square both sides to eliminate the square root: \[ (u - \sin \theta \cos \theta)^2 = \cos^2 \theta (\sin^2 \theta + \sin^2 \alpha) \] ### Step 4: Expand both sides Expanding the left side: \[ u^2 - 2u \sin \theta \cos \theta + \sin^2 \theta \cos^2 \theta = \cos^2 \theta (\sin^2 \theta + \sin^2 \alpha) \] ### Step 5: Simplify the equation Now, simplify the equation: \[ u^2 - 2u \sin \theta \cos \theta = \cos^2 \theta \sin^2 \alpha \] ### Step 6: Rearranging the quadratic equation Rearranging gives us: \[ u^2 - 2u \sin \theta \cos \theta - \cos^2 \theta \sin^2 \alpha = 0 \] ### Step 7: Apply the quadratic formula Using the quadratic formula \( u = \frac{-b \pm \sqrt{b^2 - 4ac}}{2a} \), where: - \( a = 1 \) - \( b = -2 \sin \theta \cos \theta \) - \( c = -\cos^2 \theta \sin^2 \alpha \) The discriminant \( D \) must be non-negative for real solutions: \[ D = (-2 \sin \theta \cos \theta)^2 - 4(1)(-\cos^2 \theta \sin^2 \alpha) \geq 0 \] ### Step 8: Calculate the discriminant Calculating the discriminant: \[ D = 4 \sin^2 \theta \cos^2 \theta + 4 \cos^2 \theta \sin^2 \alpha \] \[ D = 4 \cos^2 \theta (\sin^2 \theta + \sin^2 \alpha) \geq 0 \] ### Step 9: Find the maximum value of \( u \) From the quadratic equation, we find that: \[ u = \sin \theta \cos \theta \pm \sqrt{\cos^2 \theta (\sin^2 \theta + \sin^2 \alpha)} \] To find the maximum value of \( |u| \), we consider: \[ |u| \leq \sqrt{1 + \sin^2 \alpha} \] ### Step 10: Conclusion Thus, we conclude that: \[ k = \sqrt{1 + \sin^2 \alpha} \] ### Final Answer The value of \( k \) is: \[ \boxed{\sqrt{1 + \sin^2 \alpha}} \]

To solve the problem, we need to find the value of \( k \) such that: \[ |\cos \theta (\sin \theta + \sqrt{\sin^2 \theta + \sin^2 \alpha})| \leq k \] ### Step 1: Define the expression Let: ...
Promotional Banner

Topper's Solved these Questions

  • TRIGONOMETRIC FUNCTIONS

    CENGAGE|Exercise Exercise (Multiple)|17 Videos
  • TRIGONOMETRIC FUNCTIONS

    CENGAGE|Exercise Exercise (Comprehension)|11 Videos
  • TRIGONOMETRIC FUNCTIONS

    CENGAGE|Exercise Exercise 2.6|9 Videos
  • TRIGONOMETRIC EQUATIONS

    CENGAGE|Exercise Archives (Matrix Match Type)|1 Videos
  • TRIGONOMETRIC RATIOS AND TRANSFORMATION FORMULAS

    CENGAGE|Exercise Matrix Match Type|1 Videos

Similar Questions

Explore conceptually related problems

Show that the expression cos theta(sin theta+sqrt(sin^(2)theta+sin^(2)alpha)) always lies between the values of +-sqrt(1+sin^(2)alpha)

cos theta+sin theta=cos2 theta+sin2 theta

If (cos theta)/(1+sin theta)-(1-sin theta)/(cos theta)=2k then the value of k is :

The minimum and maximum values of expression y=cos theta(sin theta+sqrt(sin^(2)theta+sin^(2)alpha))

If cos theta+sin theta=sqrt(2)sin theta then sin theta-cos theta is

If 2cos theta - sin theta = 1/sqrt(2), (0^(@) lt theta lt 90^(@)) then the value of 2sin theta + cos theta is:

If cos theta + sin theta =sqrt2 cos theta , then the value of (cos theta -sin theta)/(sin theta) is

If cos theta+sin theta=sqrt(2), then cos theta-sin theta=

If cos theta-sin theta=sqrt(2)sin theta then cos theta+sin theta is equal to

sin theta+cos theta=sqrt(2) then sin^(16)theta=

CENGAGE-TRIGONOMETRIC FUNCTIONS -Exercise (Single)
  1. If thetaigt0" for "1lethetalenandtheta1+theta2+theta3+...+thetan=pithe...

    Text Solution

    |

  2. The set of values of lambda in R such that sin^2theta+costheta=lambda...

    Text Solution

    |

  3. Let A=sin^8theta+cos^14theta, " then "A("max") is

    Text Solution

    |

  4. Minimum value of y=256 sin^2x+324cosec^2x AA x inR is

    Text Solution

    |

  5. If a and b are positive quantities, (a gt b) find minimum positive val...

    Text Solution

    |

  6. If y=(sinx+cosecx)^2+(cosx+secx)^2 then the minimum value of y,AAx in ...

    Text Solution

    |

  7. The variable x satisfying the equation |sinxcosx|+sqrt(2+tan^2+cot^2x)...

    Text Solution

    |

  8. If the equation cof^4x-2cos e c^2x+a^2=0 has at least one solution, th...

    Text Solution

    |

  9. If cos^2x-(c-1)cosx+2cgeq6 for every x in R , then the true set of va...

    Text Solution

    |

  10. If the inequality sin^2x+acosx+a^2>1+cosx holds for any x in R , then...

    Text Solution

    |

  11. If (3pi)/4ltalphaltpi," then "sqrt(2cotalpha+1/sin^2alpha)is equal to

    Text Solution

    |

  12. The value of sectheta/sqrt(1-cos^2x)+cosx/(sqrt(1+cot^2theta))" for "...

    Text Solution

    |

  13. The minimum value of the function f(x)=sinx/(sqrt(1-cos^2x))+cosx/sqrt...

    Text Solution

    |

  14. If abs(cos theta{sin theta+sqrt(sin^2theta+sin^2alpha)})lek, then the ...

    Text Solution

    |

  15. In which of the following intervals the inequality, sinx < cos x < tan...

    Text Solution

    |

  16. Th range of k for which the inequaliity kcos^2x-kcosx+1>=0 AA x in(-o...

    Text Solution

    |

  17. The value of cospi/7+cos(2pi)/7+cos(3pi)/7+cos(4pi)/7+cos(5pi)/7+cos(6...

    Text Solution

    |

  18. The numerical value of tanpi/3+2tan(2pi)/3+4tan(4pi)/3+8tan(8pi)/3 is ...

    Text Solution

    |

  19. The expression 3[sin^4(3/2pi-alpha)+sin^4(3pi+alpha)]-2[sin^6(1/2pi+al...

    Text Solution

    |

  20. The value of the expression log10(tan6^@)+log10(tan12^@)+log10(tan18^@...

    Text Solution

    |