Home
Class 12
MATHS
(a+2)sinalpha(2a-1)cosalpha=(2a+1)if tan...

`(a+2)sinalpha(2a-1)cosalpha=(2a+1)if tanalpha` is

A

`3//4`

B

`4//3`

C

`2a//(a^2+1)`

D

`2a//(a^2-1)`

Text Solution

Verified by Experts

The correct Answer is:
B, D

Divide by `cosalpha` and square both sides abd let `tanalpha=t` so that ` sec^2alpha=1+t^2`
`rArr [(a+2)t+(2a-1)]^2=[(2a+1)^2(1+t^2)]`
`rArr t^3[(a+2)^2-(2a+1)^2]+2(a+2)(2a-1)t+[(2a-1)^2-(2a+1)^2]=0`
`or 3(1-a^2)t^2+2(2a^2+3a-2)t-4xx2a=0`
`or 3(1-a^2)t^2+2(2a^2+3a-2)t-4xx2a=0`
`or t(1-a^2)t^2-4(1-a^2)t-6at-8a=0`
`or (3t-4)[(1-a^2)t+2a]=0`
`or t-tanalpha=4/3or(2a)/(a^2-1)`
Promotional Banner

Topper's Solved these Questions

  • TRIGONOMETRIC FUNCTIONS

    CENGAGE|Exercise Exercise (Comprehension)|11 Videos
  • TRIGONOMETRIC FUNCTIONS

    CENGAGE|Exercise Exercise (Matrix)|3 Videos
  • TRIGONOMETRIC FUNCTIONS

    CENGAGE|Exercise Exercise (Single)|57 Videos
  • TRIGONOMETRIC EQUATIONS

    CENGAGE|Exercise Archives (Matrix Match Type)|1 Videos
  • TRIGONOMETRIC RATIOS AND TRANSFORMATION FORMULAS

    CENGAGE|Exercise Matrix Match Type|1 Videos

Similar Questions

Explore conceptually related problems

If sinalpha+cosalpha=(1)/(5), find tan((alpha)/(2)).

The number of values of the parameter alpha in [0, 2pi] for which the quadratic function (sin alpha)x^(2)+(2cosalpha)x+(1)/(2)(cos alpha+sinalpha) is the square of a linear funcion is

If sin.alpha/2+cos.alpha/2=1.4, then: sinalpha=

If (2sinalpha)/(1+cosalpha +sinalpha)=y , then prove that (1-cosalpha+sinalpha )/(1+sinalpha) is also equal to y.

If 2 sinalpha+3cosalpha=2, " then " 3 sinalpha-2cosalpha = _________.

If tantheta = (sinalpha-cosalpha)/(sinalpha+cosalpha), then (A) sin alpha-cos alpha=+-sqrt(2) sin theta (B) sinalpha+cosalpha=+-sqrt(2) cos theta (C) cos2theta=sin2alpha (D) sin2theta+cos2alpha=0

A square of side ' a ' lies above the x-axis and has one vertex at the origin. The side passing through the origin makes an angle alpha (0ltalphaltpi/ 4) with the positive direction of x-axis. equation its diagonal not passing through origin is: a. y(cosalpha-sinalpha)-x(sinalpha-cosalpha)=a b. y(cosalpha+sinalpha)+x(sinalpha-cosalpha)=a c. y(cosalpha-sinalpha)+x(sinalpha+cosalpha)=a d. y(cosalpha+sinalpha)-x(cosalpha+sinalpha)=a

If (2sinalpha)/({1+cosalpha+sinalpha})=y , then ({1-cosalpha+sinalpha})/(1+sinalpha) =

(sinalpha + cosalpha)(tanalpha + cotalpha) = secalpha + cosecalpha