Home
Class 12
MATHS
Leg f(x)=log((log)(1//3)((log)(1/3)((log...

Leg `f(x)=log((log)_(1//3)((log)_(1/3)((log)_7(sinx+a)))` be defined for every real value of `x ,` then the possible value of `a` is 3 (b) 4 (c) 5 (d) 6

A

3

B

4

C

5

D

6

Text Solution

Verified by Experts

The correct Answer is:
A, B, C

`log_(1//3)log_6(sinx+a)gt0`
`or 0ltlog_7(sinx=a)lt1`
`or 1lt(sinx+a)lt7,AA x in R`
`or 1-sixltalt7-sinx`
It is found that a should by less thanthe minimum value of (7 - sinx) and a must be greater the the maximum value of (1 - sinx). Thus,
`rArr 2ltalt6`
Promotional Banner

Topper's Solved these Questions

  • TRIGONOMETRIC FUNCTIONS

    CENGAGE|Exercise Exercise (Comprehension)|11 Videos
  • TRIGONOMETRIC FUNCTIONS

    CENGAGE|Exercise Exercise (Matrix)|3 Videos
  • TRIGONOMETRIC FUNCTIONS

    CENGAGE|Exercise Exercise (Single)|57 Videos
  • TRIGONOMETRIC EQUATIONS

    CENGAGE|Exercise Archives (Matrix Match Type)|1 Videos
  • TRIGONOMETRIC RATIOS AND TRANSFORMATION FORMULAS

    CENGAGE|Exercise Matrix Match Type|1 Videos

Similar Questions

Explore conceptually related problems

Leg f(x)=log(log_(1/3)(log_((1)/(3))(log_(7)(sin x+a)))) be defined for every real value of x, then the possible value of a is 3 (b) 4(c)5(d)6

The number of integral values of a for which f(x)=log(log_((1)/(3))(log_(7)(sin x+a))) is defined for every real value of x is

Let f(x) be a function such that f(x)=log_((1)/(3))(log_(3)(sin x+a)). If f(x) is decreasing for all real values of x, then

((log)_(5)3)xx((log)_(3)625) equals 1 b.2 c.3 d.4

((log)_(5)5)((log)_(4)9)((log)_(3)2) is equal to 2 b.5 c.1 d.(3)/(2)

If log(x-3)+log(x+2)=log(x^(2)+x-6) , then the real value of x, which satisfies the above equation is

If log_(2)log_(3)log_(4)log_(5)A=x , then the value of A is

Let y=(2^((log)_2 1/4x)-3^(log)_(27)(x^2+1)^3-2x)/(7^(4(log)_(49)x)-x-1)a n d(dy)/(dx)=a x+b , then the value of a+b is_______.