Home
Class 12
MATHS
If bgt1, sintgt0,costgt0andlogb(sint)=x,...

If `bgt1, sintgt0,costgt0andlog_b(sint)=x," then "log_b(cost)` is equal to

A

`1/2log_b(1-b^(2x))`

B

`2log(1-b^(x//2))`

C

`log_bsqrt(1-b^(2x))`

D

`sqrt(1-x^2)`

Text Solution

Verified by Experts

The correct Answer is:
A, C

`log_bsin_t=xorsint=b^x`
Let `log_b(cost)=y,then b^y=cost`
`or b^(2y)=cos^2t=1-sin^2t=1-b^(2x)`
`or 2y=log_b(1-b^(2x))`
`or y=1/3log_b(1-b^(2x))=log_bsqrt(1-b^(2x))`
Promotional Banner

Topper's Solved these Questions

  • TRIGONOMETRIC FUNCTIONS

    CENGAGE|Exercise Exercise (Comprehension)|11 Videos
  • TRIGONOMETRIC FUNCTIONS

    CENGAGE|Exercise Exercise (Matrix)|3 Videos
  • TRIGONOMETRIC FUNCTIONS

    CENGAGE|Exercise Exercise (Single)|57 Videos
  • TRIGONOMETRIC EQUATIONS

    CENGAGE|Exercise Archives (Matrix Match Type)|1 Videos
  • TRIGONOMETRIC RATIOS AND TRANSFORMATION FORMULAS

    CENGAGE|Exercise Matrix Match Type|1 Videos

Similar Questions

Explore conceptually related problems

If b >1,sint >0,cost >0a n d(log)_b(sint)=x ,t h e n(log)_b(cost) is equal to 1/2(log)_b(a-b^(2x)) (b) 2log(1-b^(x/2)) (log)_bsqrt(1-b^(2x)) (d) sqrt(1-x^2)

If b>1,sin t>0,cos t>0 and log_(b)(sin t)=x then log_(b)(cos t)=

If y=cost and x=sint , then what is (dy)/(dx) equal to?

If x=log_(k)b=log_(b)c=(1)/(2)log_(c)d, then log_(k)d is equal to

If log_(b)2=a and log_(b)5=c ,where b>0 with b!=1 , then log_(b)500 is equal to which of the following

If x=e^(t)cost and y=e^(t)sint , then what is (dx)/(dy) at t=0 equal to?

If a gt 0,bgt 0,cgt0 and 2a +b+3c=1 , then

If log_(3)x=a and log_(7)x=b, then which of the following is equal to log_(21)x?ab(b)(ab)/(a^(-1)+b^(-1))(1)/(a+b)(d)(1)/(a^(-1)+b^(-1))

if quad 0,c>0,b=sqrt(a)c,a!=1,c!=1,ac!=1a and n>0 then the value of (log_(a)n-log_(b)n)/(log_(b)n-log_(c)n) is equal to

If y is a function of x and log(x+y)-2xy=0 then the value of y(0) is equal to (a)1(b)-1( c) 2( d) 0