Home
Class 12
MATHS
If x=secphi -tanphi and y="cosec" phi+c...

If `x=secphi -tanphi and y="cosec" phi+cotphi`, then show that `xy+x-y+1=0.`

A

`x=(y+1)/(y-1)`

B

`x=(y-1)/(y+1)`

C

`y=(1+x)/(1-x)`

D

`xy+x-y+1=0`

Text Solution

Verified by Experts

The correct Answer is:
B, C, D

We have `x=(1-sinphi)/(cosphi),y=(1+cosphi)/sinphi`
Multiplying, we get
`xy=((1-sinphi)(1+cosphi))/(cosphisinphi)`
`rArr xy+1=(1sinphicosphi=sinphicosphi)/(cosphisinphi)`
`=(1-sinphi+cosphi)/(cosphisinphi)`
`andx-y=((1-sinphi)sinphi-cosphi(1+cosphi))/(cosphisinphi)`
`=(sinphi-sin^2phi-cosphi-cos^2phi)/(cosphisinphi)`
`=(sinphi-cosphi-1)/(cosphisinphi)=-(xy+1)`
Thus, `xy+x-y+1=0, x=(1+x)/(1-x)`
Promotional Banner

Topper's Solved these Questions

  • TRIGONOMETRIC FUNCTIONS

    CENGAGE|Exercise Exercise (Comprehension)|11 Videos
  • TRIGONOMETRIC FUNCTIONS

    CENGAGE|Exercise Exercise (Matrix)|3 Videos
  • TRIGONOMETRIC FUNCTIONS

    CENGAGE|Exercise Exercise (Single)|57 Videos
  • TRIGONOMETRIC EQUATIONS

    CENGAGE|Exercise Archives (Matrix Match Type)|1 Videos
  • TRIGONOMETRIC RATIOS AND TRANSFORMATION FORMULAS

    CENGAGE|Exercise Matrix Match Type|1 Videos

Similar Questions

Explore conceptually related problems

If x=secphi-tanphi&y=cosecphi+cotphi , then

If x=sectheta "and " y=cosec theta +cottheta , then prove that xy+1=y-x .

If x=sec phi-tan phi and y=csc phi+cot phi then x=(y+1)/(y-1)( b) x=(y-1)/(y+1)y=(1+x)/(1-x)(d)xy+x-y+1=0

If x=sec theta-tan theta and y="cosec"theta+cot theta," then " y-x-xy=

If x=cosec theta-sin theta and y=sec theta-cos theta then prove that x^(2/3)+y^(2/3)=(xy)^(-2/3)

If tantheta-tanphi=xandcotphi-cottheta=y , then cot(theta-phi)=?

If x=sint,y=sinKt then show that (1-x^(2))y_2-xy_(1)+K^(2)y=0 .

If tan theta = (xsin phi)/(1-xcos phi) and tan phi = (y sin theta)/(1-y cos theta) show that x sin phi = y sin theta

If 0 lt x lt pi/2 and sec x = cosec y , then the value of sin (x + y) is

If tan^(-1)x+tan^(-1)y=(pi)/(4) , and the value of xy<1 ,then show that x+y+xy=1 .