Home
Class 12
MATHS
Four numbers n1,n2,n3andn4 are given as ...

Four numbers `n_1,n_2,n_3andn_4` are given as `n_1=sin15^@-cos15^@,n_2=cos93^@+sin93^@,n_3=tan27^@-cot27^@,n_4=cot127^@+tan127^@`,Then

A

`n_1lt0`

B

`n_2lt0`

C

`n_3lt0`

D

`n_4lt0`

Text Solution

Verified by Experts

The correct Answer is:
A, C, D

`n_1=sin15^@-cos15^@lt-ve" "(cos15^@gtsin15^@)`
`n_2=cos93^@+sin93^@`
`=-sin3^@+cos3@gt0" "(cos3^@gtsin3^@)`
`n_3=tan27^@-cot27^@lt0" "(tan27^@ltcot27@)`
`n_4=cot127^@+tan127^@lt0" "(tan127^@,cot127^@lt0)`.
Promotional Banner

Topper's Solved these Questions

  • TRIGONOMETRIC FUNCTIONS

    CENGAGE|Exercise Exercise (Comprehension)|11 Videos
  • TRIGONOMETRIC FUNCTIONS

    CENGAGE|Exercise Exercise (Matrix)|3 Videos
  • TRIGONOMETRIC FUNCTIONS

    CENGAGE|Exercise Exercise (Single)|57 Videos
  • TRIGONOMETRIC EQUATIONS

    CENGAGE|Exercise Archives (Matrix Match Type)|1 Videos
  • TRIGONOMETRIC RATIOS AND TRANSFORMATION FORMULAS

    CENGAGE|Exercise Matrix Match Type|1 Videos

Similar Questions

Explore conceptually related problems

Four numbers n_1,n_2,n_3a n dn_4 are given as n_1=sin15^0-cos15^0,n_2=cos93^0+sin93^0,n_3=tan27^0-cot27^0,n_4=cot127^0+tan127^0dot n_1<0 (b) n_2<0 (c) n_3<0 (d) n_4<0

The value of (cos^(n)38^(@)-cot^(n)52^(@))/(sin^(n)52^(@)-tan^(n)38^(@))=?

If cos18^(@)-sin18^(@)=sqrt(n)sin27^(@) , then n=

tan^(-1)n+cot^(-1)(n+1)=tan^(-1)(n^(2)+n+1)

In the figure , find sin N , cos N, tan W and sin W.

tan A+2tan2A+....+2^(n-1)tan2^(n-1)A+2^(n)cot2^(n)A

The value of (cot^(n)29^(@)-cot^(n)61^(@))/(tan^(n)61^(@)-tan^(n)29^(@))=?

If tan B=(n sin A*cos A)/(1-n sin^(2)A), then prove that tan(A-B)=(1-n)tan A

If x in R and n in I then the determinant sin(n pi),sin x-cos x,log tan xcos x-sin x cos{(2n+1)(pi)/(2)},log cot xlog cot x,log tan x,tan(n pi)]|=

Provethat the average of the numbers n sin n^(@),n=2,4,6...180 is cot1^(@)