Home
Class 12
MATHS
For 0ltphiltpi//2," if" x=sum(n=0)^(oo) ...

For `0ltphiltpi//2," if" x=sum_(n=0)^(oo) cos^(2n)phi,y=sum_(n=0)^(oo) sin^(2m)phi,z=sum_(n=0)^(oo)cos^(2n)phisin^(2n)phi`,then

A

`xyz=xz+y`

B

`xyz=xy+z`

C

`xyz=x+y+z`

D

`xyz=yz+x`

Text Solution

Verified by Experts

The correct Answer is:
B, C

All are infinte geometric progression with common ratio lt 1
`x=1/(1-cos^2phi)=1/sin^2phi,y=1/(1-sin^2phi)=1/cos^2phi`,
`z=1/(1-cos^2phisin^2phi)`
Now, `xy+z=1/(sin^2phicos^2phi)+1/(1-sin^2phicos^2phi)`
`=1/(sin^2phicos^2phi(1-sin^2phicos^2phi))`
`or xy+z=xyz ...(i)`
Clearly, `x+y=(sin^2phi+cos^2phi)/(sin^2phicos^2phi)=xy`
`:. x+y+z=xyz` [using Eq. (i)]
Promotional Banner

Topper's Solved these Questions

  • TRIGONOMETRIC FUNCTIONS

    CENGAGE|Exercise Exercise (Comprehension)|11 Videos
  • TRIGONOMETRIC FUNCTIONS

    CENGAGE|Exercise Exercise (Matrix)|3 Videos
  • TRIGONOMETRIC FUNCTIONS

    CENGAGE|Exercise Exercise (Single)|57 Videos
  • TRIGONOMETRIC EQUATIONS

    CENGAGE|Exercise Archives (Matrix Match Type)|1 Videos
  • TRIGONOMETRIC RATIOS AND TRANSFORMATION FORMULAS

    CENGAGE|Exercise Matrix Match Type|1 Videos

Similar Questions

Explore conceptually related problems

let 0

If 0 lt theta, phi lt (pi)/(2), x = sum_(n=0)^(oo)cos^(2n)theta, y=sum_(n=0)^(oo)sin^(2n)phi and z=sum_(n=0)^(oo)cos^(2n)theta*sin^(2n)phi then :

If =sum_(n=0)^(oo)cos^(2n)theta,quad y=sum_(n=0)^(oo)sin^(2n)phi,z=sum_(n=0)^(oo)cos^(2n)theta sin^(2n)phi, where 0

If 0

If x=sum_(n=0)^(oo) a^(n),y=sum_(n=0)^(oo)b^(n),z=sum_(n=0)^(oo)(ab)^(n) , where a,blt1 , then

If a=sum_(n=0)^(oo)x^(n),b=sum_(n=0)^(oo)y^(n),c=sum_(n=0)^(oo)(xy)^(n) where |x|,|y|<1 then

If a=sum_(n=0)^(oo)x^(n),b=sum_(n=0)^(oo)y^(n),c=sum_(n=0)^(oo)(xy)^(n) where |x|,|y|<1 then