Home
Class 8
MATHS
Evaluate: sqrt (1.0816)...

Evaluate:
` sqrt (1.0816)`

Text Solution

AI Generated Solution

The correct Answer is:
To evaluate \( \sqrt{1.0816} \), we can follow these steps: ### Step 1: Remove the Decimal We can express \( 1.0816 \) as \( \frac{10816}{100} \). This allows us to simplify the square root: \[ \sqrt{1.0816} = \sqrt{\frac{10816}{100}} = \frac{\sqrt{10816}}{\sqrt{100}} = \frac{\sqrt{10816}}{10} \] **Hint:** To simplify the square root of a decimal, convert it into a fraction. ### Step 2: Find the Square Root of 10816 Next, we need to find \( \sqrt{10816} \). We can use the long division method to find the square root of \( 10816 \). 1. Pair the digits of \( 10816 \) from right to left: \( 10 \) and \( 816 \). 2. Find the largest number whose square is less than or equal to \( 10 \). That number is \( 3 \) (since \( 3^2 = 9 \)). 3. Subtract \( 9 \) from \( 10 \) to get \( 1 \), and bring down the next pair \( 16 \) to make \( 116 \). **Hint:** When pairing digits, always start from the decimal point or the rightmost side. ### Step 3: Continue the Long Division Now, we need to find the next digit: 1. Double the quotient \( 3 \) to get \( 6 \). 2. Now, we need to find a digit \( x \) such that \( (60 + x) \times x \) is less than or equal to \( 116 \). 3. Testing \( x = 1 \): \( 61 \times 1 = 61 \) (valid). 4. Testing \( x = 2 \): \( 62 \times 2 = 124 \) (invalid). 5. So, we take \( x = 1 \). Now, subtract \( 61 \) from \( 116 \) to get \( 55 \) and bring down the next pair \( 00 \) to make \( 5500 \). **Hint:** Always test digits starting from the largest possible value down to zero. ### Step 4: Repeat the Process Now, we repeat the process: 1. Double the current quotient \( 31 \) to get \( 62 \). 2. Find \( x \) such that \( (620 + x) \times x \) is less than or equal to \( 5500 \). 3. Testing \( x = 8 \): \( 628 \times 8 = 5024 \) (valid). 4. Testing \( x = 9 \): \( 629 \times 9 = 5661 \) (invalid). 5. So, we take \( x = 8 \). Subtract \( 5024 \) from \( 5500 \) to get \( 476 \) and bring down \( 00 \) to make \( 47600 \). **Hint:** Keep track of your calculations carefully to avoid errors. ### Step 5: Final Steps 1. Double the current quotient \( 318 \) to get \( 636 \). 2. Find \( x \) such that \( (6360 + x) \times x \) is less than or equal to \( 47600 \). 3. Testing \( x = 7 \): \( 6367 \times 7 = 44569 \) (valid). 4. Testing \( x = 8 \): \( 6368 \times 8 = 50944 \) (invalid). 5. So, we take \( x = 7 \). Subtract \( 44569 \) from \( 47600 \) to get \( 3021 \). After completing the long division, we find that \( \sqrt{10816} = 104 \). ### Step 6: Final Calculation Now, substitute back into our earlier expression: \[ \sqrt{1.0816} = \frac{\sqrt{10816}}{10} = \frac{104}{10} = 10.4 \] ### Final Answer Thus, \( \sqrt{1.0816} = 10.4 \). ---
Promotional Banner

Topper's Solved these Questions

  • SQUARES

    RS AGGARWAL|Exercise EXERCISE 3G|10 Videos
  • SQUARES

    RS AGGARWAL|Exercise EXERCISE 3H|19 Videos
  • SQUARES

    RS AGGARWAL|Exercise EXERCISE 3E|19 Videos
  • RATIONAL NUMBERS

    RS AGGARWAL|Exercise TEST PAPER|19 Videos
  • THREE - DIMENSIONAL FIGURES

    RS AGGARWAL|Exercise EXERCISE 19 B|5 Videos

Similar Questions

Explore conceptually related problems

Evaluate : 1/( 1 + sqrt (2) ) + 1/( sqrt(2) + sqrt (3) ) + 1/ ( sqrt(3) + sqrt (4) )

Evaluate : ( 1 + sqrt(2) ) / ( sqrt(5) + sqrt(3) )

Evaluate: " "(i)" "(sqrt(-1))^(192)" "(ii)" "(sqrt(-1))^(93)" "(iii)" "(sqrt(-1))^(30)

Evaluate : ( sqrt(x) + 1/ sqrt(x) )^2

Evaluate : ( sqrt(2) - 1/sqrt(2) ) times ( sqrt(2) - 1/sqrt(2) )

Evaluate : 1/( sqrt(3) + sqrt(2)) + 1/( sqrt(3 ) - sqrt(2))

Evaluate : 1/( sqrt(3) + sqrt(2)) + 1/( sqrt(3 ) - sqrt(2))

Evaluate : 1/( sqrt(3) + sqrt(2)) + 1/( sqrt(3 ) - sqrt(2))

Evaluate : sqrt(1-x) times sqrt( 1 + x ) = ?

Evaluate: sqrt(1+4sqrt(-3))