Home
Class 12
MATHS
Number of real solutions of sqrt(x)+sqrt...

Number of real solutions of `sqrt(x)+sqrt(x-sqrt(1-x))=1` is

A

`0`

B

`1`

C

`2`

D

infinite

Text Solution

Verified by Experts

The correct Answer is:
B

`(b)` We have `sqrt(x)+sqrt(x-sqrt(1-x))=1`
`impliessqrt(x-sqrt(1-x))=1-sqrt(x)`
Squaring
`x-sqrt(1-x)=1+x-2sqrt(x)`
`implies2sqrt(x)-sqrt(1-x)=1` ..........`(i)`
`implies (2sqrt(x)-sqrt(1-x))(2sqrt(x)+sqrt(1-x))=(2sqrt(x)+sqrt(1-x))`
`implies4x-(1-x)=2sqrt(x)+sqrt(1-x)`
`implies 2sqrt(x)+sqrt(1-x)=5x-1` ................`(ii)`
Adding `(i)` and `(ii)`,
`4sqrt(x)=5x`
`implies 16x=25x^(2)`
`implies x=0,(16)/(25)`
Clearly `x=0` does not satisfy the equation.
Putting `x=(16)/(25)` in equation
`L.H.S=(4)/(3)+sqrt((16)/(25)-(3)/(5))=(4)/(5)+(1)/(5)=1`
So `x=(16)/(25)` is the only solution.
Promotional Banner

Topper's Solved these Questions

  • THEORY OF EQUATIONS

    CENGAGE|Exercise Multiple Correct Answer|6 Videos
  • THEORY OF EQUATIONS

    CENGAGE|Exercise Comprehension|12 Videos
  • STRAIGHT LINES

    CENGAGE|Exercise JEE Advanced Previous Year|4 Videos
  • THREE DIMENSIONAL GEOMETRY

    CENGAGE|Exercise Question Bank|20 Videos

Similar Questions

Explore conceptually related problems

Number of real solutions of sqrt(2x-4)-sqrt(x+5)=1 is

The number of real solution of sqrt(x + 8) + sqrt( x - 1) = 9 is _____

Number of real roots of the equation sqrt(x)+sqrt(x-sqrt(1-x))=1 is A.0 B.1 c.2 D.3

The number of real solutions of sqrt(x^(2)-4x+3)+sqrt(x^(2)-9)=sqrt(4x^(2)-14x+6)

If sqrt(x)+sqrt(x-sqrt(1-x))=1 then value of x is

The number of solutions for sqrt(5x+7)-sqrt(3x+1)=sqrt(x+3) is:

Number of real roots of the equation sqrt(x)+sqrt(x-sqrt((1-x)))=1 is