Home
Class 12
MATHS
For a, b,c non-zero, real distinct, the ...

For `a`, `b`,`c` non-zero, real distinct, the equation, `(a^(2)+b^(2))x^(2)-2b(a+c)x+b^(2)+c^(2)=0` has non-zero real roots. One of these roots is also the root of the equation :

A

`(b^(2)-c^(2))x^(2)+2a(b-c)x-a^(2)=0`

B

`(b^(2)+c^(2))x^(2)-2a(b+c)x+a^(2)=0`

C

`a^(2)x^(2)+a(c-b)x-bc=0`

D

`a^(2)x^(2)-a(b-c)x+bc=0`

Text Solution

Verified by Experts

The correct Answer is:
C

`(c )` ` (a^(2)+b^(2))x^(2)-2b(a+c)x+b^(2)+c^(2)=0`
`D=4b^(2)(a+c)^(2)-4(a^(2)+b^(2))(b^(2)+c^(2))`
`=-4(b^(4)-2b^(2)ac+a^(2)c^(2))`
`=-4(b^(2)-ac)^(2)`
For real roots, `D ge 0`
`implies -4(b^(2)-ac)^(2) ge 0`
`implies b^(2)-ac=0`
`implies` Roots are real and equal.
`:.` Roots are `(2b(a+c))/(2(a^(2)+b^(2)))`
`=(b(a+c))/(a^(2)+ac)`
`=(b)/(a)`
This root satisfies option `(c )`
Promotional Banner

Topper's Solved these Questions

  • THEORY OF EQUATIONS

    CENGAGE|Exercise Multiple Correct Answer|6 Videos
  • THEORY OF EQUATIONS

    CENGAGE|Exercise Comprehension|12 Videos
  • STRAIGHT LINES

    CENGAGE|Exercise JEE Advanced Previous Year|4 Videos
  • THREE DIMENSIONAL GEOMETRY

    CENGAGE|Exercise Question Bank|20 Videos

Similar Questions

Explore conceptually related problems

Let a, b, c be non-zero real roots of the equation x^(3)+ax^(2)+bx+c=0 . Then

Suppose a,b,care three non-zero real numbers.The equation x^(2)+(a+b+c)x+(a^(2)+b^(2)+c^(2))=0

If a,b,c,d in R, then the equation (x^(2)+ax-3b)(x^(2)-cx+b)(x^(2)-dx+2b)=0 has a.6 real roots b.at least 2 real roots c.4 real roots d.none of these

If the equation ax^(2)+bx+c=x has no real roots,then the equation a(ax^(2)+bx+c)^(2)+b(ax^(2)+bx+c)+c=x will have a.four real roots b.no real root c.at least two least roots d.none of these

The roots of the equation (b-c)x^(2)+(c-a)x+(a-b)=0

if the roots of (a^2+b^2)x^2-2b(a+c)x+(b^2+c^2)=0 are real and equal then a,b,c are in

Consider the equation (a+c-b)x^(2)+2cx+(b+c-a)=0 where a b,c are distinct real number.suppose that both the roots of the equation are rational then