Home
Class 12
MATHS
If alpha, beta are the roots of the equa...

If `alpha`, `beta` are the roots of the equation `ax^(2)+bx+c=0` and `S_(n)=alpha^(n)+beta^(n)`, then `aS_(n+1)+bS_(n)+cS_(n-1)=(n ge 2)`

A

`0`

B

`a+b+c`

C

`(a+b+c)n`

D

`n^(2)abc`

Text Solution

Verified by Experts

The correct Answer is:
A

`(a)` `S_(n+1)=alpha^(n+1)+beta^(n+1)`
`=(alpha+beta)(alpha^(n)+beta^(n))-alphabeta(alpha^(n-1)+beta^(n-1))`
`=-(b)/(a)*S_(n)-(c )/(a)*S_(n-1)`
Promotional Banner

Topper's Solved these Questions

  • THEORY OF EQUATIONS

    CENGAGE|Exercise Multiple Correct Answer|6 Videos
  • THEORY OF EQUATIONS

    CENGAGE|Exercise Comprehension|12 Videos
  • STRAIGHT LINES

    CENGAGE|Exercise JEE Advanced Previous Year|4 Videos
  • THREE DIMENSIONAL GEOMETRY

    CENGAGE|Exercise Question Bank|20 Videos

Similar Questions

Explore conceptually related problems

If alpha and beta are the roots of the equation ax^(2)+bx+b=0 and S_(n)=alpha^(n)+beta^(n), then aS_(n+1)+bS_(n)+cS_(n-1)=

If alpha,beta are the roots of the equation ax^(2)+bx+c=0 and S_(n)=alpha^(n)+beta^(n), then a S_(n+1)+cS_(n)-1)=

If alpha and beta are the roots of the equation x^(2)-ax+b=0 and A_(n)=alpha^(n)+beta^(n)

If alpha, beta are the roots of the equation ax^(2)+bx+c=0 and A_(n)=alpha^(n)+beta^(n) , then aA_(n+2)+bA_(n+1)+cA+(n) is equal to

If alpha,beta are the roots of the equation ax^2+bx+c=0 and S_n=alpha^n+beta^n , show that aS_(n+1)+bS_n+cS_(n-1)=0 and hence find S_5

If alpha,beta are the roots of the equation, x^(2)-x-1=0 and S_(n)=2023 alpha^(n)+2024 beta^(n) ,then 2S_(12)=S_(11)+S_(10)

If alpha and beta are the roots of ax^(2)+bx+c=0andS_(n)=alpha^(n)+beta^(n), then aS_(n+1)+bS_(n)+cS_(n-1)=0 and hence find S_(5)

If alpha and beta are the roots of the equation x^(2)-ax-ax+b=0 and v_(n)=alpha^(n)=beta^(n) , show that v_(n+1)=av_(n)-bv_(n-1) and hence obtain the value of alpha^(5)+beta^(5) .