Home
Class 12
MATHS
Consider quadratic equations x^(2)-ax+b=...

Consider quadratic equations `x^(2)-ax+b=0`……….`(i)` and `x^(2)+px+q=0`……….`(ii)`

A

`p^(2)-a^(2)`

B

`a^(2)-p^(2)`

C

`(p^(2)-a^(2))/(4)`

D

None of these

Text Solution

Verified by Experts

The correct Answer is:
C

`(c )` `alpha+beta=a`, `alphabeta=b`, `gamma+delta=p`, `gammadelta=q`
`alpha`, `beta`, `gamma`, `delta` are in `A.P.`, `beta-alpha=delta-gamma`
`implies (beta+alpha)^(2)-4alphabeta=(delta+gamma)^(2)-4gammadelta`
`implies a^(2)-4b=p^(2)-4q`
`implies q-b=(p^(2)-a^(2))/(4)`
Promotional Banner

Topper's Solved these Questions

  • THEORY OF EQUATIONS

    CENGAGE|Exercise Examples|136 Videos
  • THEORY OF EQUATIONS

    CENGAGE|Exercise Exercise 2.1|3 Videos
  • THEORY OF EQUATIONS

    CENGAGE|Exercise Multiple Correct Answer|6 Videos
  • STRAIGHT LINES

    CENGAGE|Exercise JEE Advanced Previous Year|4 Videos
  • THREE DIMENSIONAL GEOMETRY

    CENGAGE|Exercise Question Bank|20 Videos

Similar Questions

Explore conceptually related problems

Consider quadratic equations x^(2)-ax+b=0 and x^(2)+px+q=0 If the above equations have one common root and the other roots are reciprocals of each other, then (q-b)^(2) equals

If the quadratic equation x^(2) +ax +b =0 and x^(2) +bx +a =0 (a ne b) have a common root, the find the numeical value of a +b.

Determine the nature of roots of given quadratic equation ( i x^(2)+x+1=0 (ii) 4x^(2)-4x+1=0

Solve the following quadratic equation for x.x^(2)-4ax-b^(2)+4a^(2)=0

Solve the following quadratic equations : (i) x^(2)-45x+324=0 (ii) x^(2)-55x+ 750=0

Write the discriminant of the following quadratic equations: sqrt(3)x^(2)-2sqrt(2)x-2sqrt(3)=0 (ii) x^(2)+x+1=0 (iii) x^(2)+px+2q=0

Suppose that the quadratic equations 3x^(2)+px+1=0 and 2x^(2)+qx+1=0 have a common root then the value of 5pq-2p^(2)-3q^(2)=