Home
Class 12
MATHS
Let alpha, beta (a lt b) be the roots of...

Let `alpha`, `beta (a lt b)` be the roots of the equation `ax^(2)+bx+c=0`. If `lim_(xtom) (|ax^(2)+bx+c|)/(ax^(2)+bx+c)=1` then

A

`(|a|)/(a)=-1`, `m lt alpha`

B

`a gt 0`, `alpha lt m lt beta`

C

`(|a|)/(a)=1`, `m gt beta`

D

`a lt 0`, `m gt beta`

Text Solution

Verified by Experts

The correct Answer is:
C

`(c )` According to the given condition, we have
`|am^(2)+bm+c|=am^(2)+bm+c`
i.e., `am^(2)+bm+c gt 0`
`implies` if `a lt 0` , then `m` lies in `(alpha,beta)`
and if `a gt 0`, then `m` does not lie in `(alpha,beta)`
Hence, option `(c )` is correct, since
`(|a|)/(a)=1impliesa gt 0` and in that case `m` does not lie in `(alpha,beta)`.
Promotional Banner

Topper's Solved these Questions

  • THEORY OF EQUATIONS

    CENGAGE|Exercise Multiple Correct Answer|6 Videos
  • THEORY OF EQUATIONS

    CENGAGE|Exercise Comprehension|12 Videos
  • STRAIGHT LINES

    CENGAGE|Exercise JEE Advanced Previous Year|4 Videos
  • THREE DIMENSIONAL GEOMETRY

    CENGAGE|Exercise Question Bank|20 Videos

Similar Questions

Explore conceptually related problems

Let alpha,beta(alpha

Let alpha and beta be the roots of the equation ax^(2)+bx+c=0 then lim_(x rarr beta)(1-cos(ax^(2)+bx+c))/((x-beta)^(2))

If alpha, beta are the roots of the equation ax^(2)+bx+c=0 , a!=0 then alpha+beta =

If alpha beta( alpha lt beta) are two distinct roots of the equation. ax^(2)+bx+c=0 , then

If alpha and beta are the roots of the equation ax^(2)+bx+c=0" then "int((x-alpha)(x-beta))/(ax^(2)+bx+c)dx=

If alpha,beta are the roots of the equation ax^(2)+bx+c=0 then log(a-bx+cx^(2)) is equal to

If alpha,beta are the roots of the quadratic equation ax^(2)+bx+c=0 then alpha beta =

If alpha and beta are the roots of the equation ax^(2)+bx+c=0, then the value of alpha^(3)+beta^(3)