Home
Class 12
MATHS
If a^(3)-3a^(2)+5a-17=0 and b^(3)-3b^(2)...

If `a^(3)-3a^(2)+5a-17=0` and `b^(3)-3b^(2)+5b+11=0` are such that `a+b` is a real number, then the value of `a+b` is

A

`-1`

B

`1`

C

`2`

D

`-2`

Text Solution

Verified by Experts

The correct Answer is:
C

`(c )` Let `a+b=lambdaimpliesb=lambda-a`
So `(lambda-a)^(3)-3(lambda-a)^(2)+5(lambda-a)+11=0`
`lambda^(3)-a^(3)-3lambda^(2)a+3lambdaa^(2)-3lambda^(2)+6lambda a-3a^(2)+5lambda-5a+11=0` ,brgt `implies a^(3)+(3-3lambda)a^(2)+(3lambda^(2)-6lambda+5)a-(lambda^(3)-3lambda^(2)+5lambda+11)=0`
Comparing it with the equation `a^(3)-3a^(2)+5a-17=0`, we get `lambda=2`
Promotional Banner

Topper's Solved these Questions

  • THEORY OF EQUATIONS

    CENGAGE|Exercise Multiple Correct Answer|6 Videos
  • THEORY OF EQUATIONS

    CENGAGE|Exercise Comprehension|12 Videos
  • STRAIGHT LINES

    CENGAGE|Exercise JEE Advanced Previous Year|4 Videos
  • THREE DIMENSIONAL GEOMETRY

    CENGAGE|Exercise Question Bank|20 Videos

Similar Questions

Explore conceptually related problems

If |a|=|b|=1 and |a+b|=sqrt(3) , then the value of (3a-4b)(2b+5b) is

If 2x^(3)+ax^(2)+bx+4=0 (a and b are positive real numbers) has three real roots. The minimum value of (a+b)^(3) is

If a *** b = 2 a + 3b - ab , then the value of (3 *** 5 + 5 *** 3) is

If 2x^(3)+ax^(2)+bx+4=0 (a and b are positive real numbers) has three real roots. The minimum value of b^(3) is

If (a+3b)*(7a-5b)=0 and (a-4b)*(7a-2b)=0 . Then, the angle between a and b is