Home
Class 12
MATHS
If a+b+c=24, a^(2)+b^(2)+c^(2)=210, abc=...

If `a+b+c=24`, `a^(2)+b^(2)+c^(2)=210`, `abc=440`. Then the least value of `a-b-c` is

A

`-2`

B

`2`

C

`8`

D

`-14`

Text Solution

AI Generated Solution

The correct Answer is:
To solve the problem step by step, we need to use the given equations and properties of symmetric sums. ### Given: 1. \( a + b + c = 24 \) (Equation 1) 2. \( a^2 + b^2 + c^2 = 210 \) (Equation 2) 3. \( abc = 440 \) (Equation 3) ### Step 1: Find \( ab + ac + bc \) We can use the identity: \[ a^2 + b^2 + c^2 = (a + b + c)^2 - 2(ab + ac + bc) \] Substituting the values from Equation 1 and Equation 2: \[ 210 = 24^2 - 2(ab + ac + bc) \] Calculating \( 24^2 \): \[ 24^2 = 576 \] So, we have: \[ 210 = 576 - 2(ab + ac + bc) \] Rearranging gives: \[ 2(ab + ac + bc) = 576 - 210 \] \[ 2(ab + ac + bc) = 366 \] \[ ab + ac + bc = 183 \] ### Step 2: Form the cubic equation Using the values we have, we can form the cubic equation whose roots are \( a, b, c \): \[ x^3 - (a+b+c)x^2 + (ab+ac+bc)x - abc = 0 \] Substituting the known values: \[ x^3 - 24x^2 + 183x - 440 = 0 \] ### Step 3: Find the roots of the cubic equation To find the roots, we can use the Rational Root Theorem or synthetic division. Testing possible rational roots, we find: - Testing \( x = 5 \): \[ 5^3 - 24(5^2) + 183(5) - 440 = 125 - 600 + 915 - 440 = 0 \] Thus, \( x = 5 \) is a root. Now we can factor the cubic equation by dividing it by \( (x - 5) \): Using synthetic division: \[ \begin{array}{r|rrrr} 5 & 1 & -24 & 183 & -440 \\ & & 5 & -95 & 440 \\ \hline & 1 & -19 & 88 & 0 \\ \end{array} \] This gives us: \[ x^2 - 19x + 88 = 0 \] ### Step 4: Solve the quadratic equation Using the quadratic formula: \[ x = \frac{-b \pm \sqrt{b^2 - 4ac}}{2a} \] where \( a = 1, b = -19, c = 88 \): \[ x = \frac{19 \pm \sqrt{(-19)^2 - 4 \cdot 1 \cdot 88}}{2 \cdot 1} \] Calculating the discriminant: \[ x = \frac{19 \pm \sqrt{361 - 352}}{2} \] \[ x = \frac{19 \pm \sqrt{9}}{2} \] \[ x = \frac{19 \pm 3}{2} \] This gives us: \[ x = \frac{22}{2} = 11 \quad \text{and} \quad x = \frac{16}{2} = 8 \] ### Step 5: Roots of the cubic equation Thus, the roots are \( a = 5, b = 8, c = 11 \) (in any order). ### Step 6: Find the least value of \( a - b - c \) Calculating: \[ a - b - c = 5 - 8 - 11 = 5 - 19 = -14 \] ### Final Answer The least value of \( a - b - c \) is \( \boxed{-14} \).

To solve the problem step by step, we need to use the given equations and properties of symmetric sums. ### Given: 1. \( a + b + c = 24 \) (Equation 1) 2. \( a^2 + b^2 + c^2 = 210 \) (Equation 2) 3. \( abc = 440 \) (Equation 3) ### Step 1: Find \( ab + ac + bc \) ...
Promotional Banner

Topper's Solved these Questions

  • THEORY OF EQUATIONS

    CENGAGE|Exercise Multiple Correct Answer|6 Videos
  • THEORY OF EQUATIONS

    CENGAGE|Exercise Comprehension|12 Videos
  • STRAIGHT LINES

    CENGAGE|Exercise JEE Advanced Previous Year|4 Videos
  • THREE DIMENSIONAL GEOMETRY

    CENGAGE|Exercise Question Bank|20 Videos

Similar Questions

Explore conceptually related problems

If a+b+c=24 , then the maximum value of abc is :

If a+b+c=6, a^(2)+b^(2)+c^(2)=14 and a^(3)+b^(3)+c^(3)=36 then value of abc is equal to

For real a, b and c if a^(2) + b^(2) + c^(2) = ab + bc + ca , then find the value of (a + b + c)^(2) A. 9a^(2) B. 81 a^(2) C. 27 a^(2) D. 24 a^(2)

If (a + b + c) = 2 , a^2+b^2+c^2=26 , then the value of a^3+b^3+c^3-3abc is : यदि (a + b + c) = 2 , a^2+b^2+c^2=26 है, तो a^3+b^3+c^3-3abc का मान ज्ञात करें |

If a+2b+3c=4, then find the least value of a^(2)+b^(2)+c^(2)