Home
Class 12
MATHS
w(1), w(2) be roots of (a+barc)z^(2)+(b+...

`w_(1)`, `w_(2)` be roots of `(a+barc)z^(2)+(b+barb)z+(bara+c)=0`. If `|z_(1)| lt 1`, `|z_(2)| lt 1`, then

A

`|w_(1)| lt 1`

B

`|w_(1)| = 1`

C

`|w_(2)| lt 1`

D

`|w_(2)| = 1`

Text Solution

Verified by Experts

The correct Answer is:
B, D

`(b,d)` `a+barc ne 0`
Now, `(a+barc)w_(1)^(2)+(b+barb)w_(1)+(bara+c)=0`
`implies (bara+c)w_(1)^(2)+(b+barb)barw_(1)+(a+barc)=0` ,brgt Since, `barw_(1) ne 0`, we get `(a+barc)(1)/(barw_(1)^(2))+(b+barb)(1)/(barw_(1))+(bara+c)=0`
Hence, `(1)/(barw_(1))` is also a root, `w_(2) ne (1)/(barw_(1))`, so `w_(1)=(1)/(barw_(1))`
`implies |w_(1)|=1`
Similarly `|w_(2)|=1`
Promotional Banner

Topper's Solved these Questions

  • COMPLEX NUMBERS

    CENGAGE|Exercise Single correct Answer|62 Videos
  • COMPLEX NUMBERS

    CENGAGE|Exercise Matching Column|1 Videos
  • CIRCLES

    CENGAGE|Exercise Question Bank|32 Videos
  • CONIC SECTIONS

    CENGAGE|Exercise Solved Examples And Exercises|91 Videos

Similar Questions

Explore conceptually related problems

If z_(1),z_(2) are roots of equation z^(2)-az+a^(2)=0 then |(z_(1))/(z_(2))|=

Let z_(1) and z_(2) be the roots of z^(2)+az+b=0 If the origin,z_(1) and z_(2) from an equilateral triangle,then

Prove that |(z_1, z_2)/(1-barz_1z_2)|lt1 if |z_1|lt1,|z_2|lt1

Let z_(1) and z_(2) be two non -zero complex number such that |z_(1)+z_(2)| = |z_(1) | = |z_(2)| . Then (z_(1))/(z_(2)) can be equal to ( omega is imaginary cube root of unity).

If z_(1) and z_(2) are two complex numbers such that |z_(1)| lt 1 lt |z_(2)| , then prove that |(1- z_(1)barz_(2))//(z_(1)-z_(2))| lt 1

If omega is the 2014^("th") root of unity and z_(1) and z_(2) be any two complex numbers such that |z_(1)|=3,|z_(2)|=4 then value of underset(k=0)overset(2013)sum |z_(1)+omega^(k)z_(2)|^(2) is

If |z_(1)-1|lt 1,|z_(2)-2|lt 2,|z_(3)-3|lt 3 , then |z_(1)+z_(2)+z_(3)|

For x_(1), x_(2), y_(1), y_(2) in R if 0 lt x_(1)lt x_(2)lt y_(1) = y_(2) and z_(1) = x_(1) + i y_(1), z_(2) = x_(2)+ iy_(2) and z_(3) = (z_(1) + z_(2))//2, then z_(1) , z_(2) , z_(3) satisfy :

CENGAGE-COMPLEX NUMBERS-Question Bank
  1. w(1), w(2) be roots of (a+barc)z^(2)+(b+barb)z+(bara+c)=0. If |z(1)| l...

    Text Solution

    |

  2. It is given that complex numbers z(1) and z(2) satisfy |z(1) |=2 and |...

    Text Solution

    |

  3. If omega is any complex number such that z omega=|z|^(2) and |z-bar(z)...

    Text Solution

    |

  4. If m is the minimum value of |z|+|2 z-omega| where |omega|=1, then 4 m...

    Text Solution

    |

  5. If (2-3 i) is a root of the equation x^(3)-b x^(2)+25 x div d=0 (where...

    Text Solution

    |

  6. If the area 'bounded by the locus of z satisfying arg (z)=0, Im((1+sqr...

    Text Solution

    |

  7. The circle |z+3|=1 touches |z-sqrt(7) i|=r. Then sum of possible value...

    Text Solution

    |

  8. Let i=sqrt(-1). The absolute value of product of the real part of the ...

    Text Solution

    |

  9. If |z(1)|=1,|z(2)|=2,|z(3)|=3 and |9 z(1) z(2)+4 z(1) z(3)+z(2) z(3)|...

    Text Solution

    |

  10. [(-1+i sqrt(3))/(2)]^(6)+[(-1-i sqrt(3))/(2)]^(6)+[(-1+i sqrt(3))/(2)]...

    Text Solution

    |

  11. Let A=(a in R |. the equation (1+2 i) x^(3)-2(3+i) x^(2)+(5- 4i) x+2 a...

    Text Solution

    |

  12. If |Z-i| le 2 and Z(1)=5+3 i , then the maximum value of |i Z+Z(1)...

    Text Solution

    |

  13. If P is the affix of z in the Argand diagram and P moves so that (z-i)...

    Text Solution

    |

  14. The imaginary part of complex number z satisfying l floor |Z-I-2i|le 1...

    Text Solution

    |

  15. Number of complex numbers z satisfying z^(3)=bar(z) is

    Text Solution

    |

  16. Let z=9+b i where b is non zero real and i^(2)=-1. If the imaginary pa...

    Text Solution

    |

  17. The value of e (CiS)(-i)-operatorname(CiS)(i)) is equal to

    Text Solution

    |

  18. Number of complex numbers z such that |z|=1 ( and ) |(z)/(bar(z))+...

    Text Solution

    |

  19. The straight line (1+2 i) z+(2 i-1) bar(z)=10 i on the complex plane, ...

    Text Solution

    |

  20. If m and n are the smallest positive integers satisfying the relation ...

    Text Solution

    |

  21. (sqrt[3](3)+(3^(5 / 6)) i)^(3) is an integer where i=sqrt(-1). The abs...

    Text Solution

    |