Home
Class 12
MATHS
If 6^(th) term in the expansion of ((3)/...

If `6^(th)` term in the expansion of `((3)/(2)+(x)/(3))^(n)` is numerically greatest, when `x=3`, then the sum of possible integral values of `'n'` is

A

`23`

B

`24`

C

`25`

D

`26`

Text Solution

AI Generated Solution

The correct Answer is:
To solve the problem, we need to find the integral values of \( n \) for which the 6th term in the expansion of \( \left(\frac{3}{2} + \frac{x}{3}\right)^n \) is numerically greatest when \( x = 3 \). ### Step-by-Step Solution: 1. **Identify the 6th Term**: The \( k \)-th term in the binomial expansion is given by: \[ T_k = \binom{n}{k-1} a^{n-(k-1)} b^{k-1} \] Here, \( a = \frac{3}{2} \) and \( b = \frac{x}{3} \). For the 6th term, \( k = 6 \): \[ T_6 = \binom{n}{5} \left(\frac{3}{2}\right)^{n-5} \left(\frac{x}{3}\right)^5 \] 2. **Substituting \( x = 3 \)**: \[ T_6 = \binom{n}{5} \left(\frac{3}{2}\right)^{n-5} \left(1\right)^5 = \binom{n}{5} \left(\frac{3}{2}\right)^{n-5} \] 3. **Condition for Greatest Term**: For the 6th term to be the greatest, we need: \[ \frac{T_5}{T_4} > 1 \quad \text{and} \quad \frac{T_6}{T_5} < 1 \] 4. **Calculate \( T_5 \) and \( T_4 \)**: - **5th Term**: \[ T_5 = \binom{n}{4} \left(\frac{3}{2}\right)^{n-4} \] - **4th Term**: \[ T_4 = \binom{n}{3} \left(\frac{3}{2}\right)^{n-3} \] 5. **Set Up the Inequality**: \[ \frac{T_5}{T_4} = \frac{\binom{n}{4} \left(\frac{3}{2}\right)^{n-4}}{\binom{n}{3} \left(\frac{3}{2}\right)^{n-3}} > 1 \] Simplifying gives: \[ \frac{\binom{n}{4}}{\binom{n}{3}} \cdot \frac{1}{\frac{3}{2}} > 1 \] \[ \frac{n-4}{5} \cdot \frac{2}{3} > 1 \] \[ n - 4 > \frac{15}{2} \quad \Rightarrow \quad n > \frac{23}{2} \quad \Rightarrow \quad n > 11.5 \] 6. **Second Condition**: Now for \( \frac{T_6}{T_5} < 1 \): \[ \frac{T_6}{T_5} = \frac{\binom{n}{5} \left(\frac{3}{2}\right)^{n-5}}{\binom{n}{4} \left(\frac{3}{2}\right)^{n-4}} < 1 \] Simplifying gives: \[ \frac{\binom{n}{5}}{\binom{n}{4}} \cdot \frac{1}{\frac{3}{2}} < 1 \] \[ \frac{n-5}{6} \cdot \frac{2}{3} < 1 \] \[ n - 5 < 9 \quad \Rightarrow \quad n < 14 \] 7. **Combine Results**: From the inequalities, we have: \[ 11.5 < n < 14 \] The possible integral values for \( n \) are \( 12 \) and \( 13 \). 8. **Sum of Possible Values**: \[ 12 + 13 = 25 \] ### Final Answer: The sum of possible integral values of \( n \) is \( \boxed{25} \).

To solve the problem, we need to find the integral values of \( n \) for which the 6th term in the expansion of \( \left(\frac{3}{2} + \frac{x}{3}\right)^n \) is numerically greatest when \( x = 3 \). ### Step-by-Step Solution: 1. **Identify the 6th Term**: The \( k \)-th term in the binomial expansion is given by: \[ T_k = \binom{n}{k-1} a^{n-(k-1)} b^{k-1} ...
Promotional Banner

Topper's Solved these Questions

  • BINOMIAL THEOREM

    CENGAGE|Exercise Multiple Correct Answer|4 Videos
  • BINOMIAL THEOREM

    CENGAGE|Exercise Comprehension|11 Videos
  • BINOMIAL THEOREM

    CENGAGE|Exercise JEE Previous Year|16 Videos
  • AREA UNDER CURVES

    CENGAGE|Exercise Question Bank|20 Videos
  • BINOMIAL THEORM

    CENGAGE|Exercise Question Bank|31 Videos

Similar Questions

Explore conceptually related problems

n th term in the expansion of (x+(1)/(x))^(2n)

The middle term in the expansion of (1-3x+3x^(2)-x^(3))^(2n) is

Find the 7 th term n the expansion of (3x^(2)-(1)/(x^(3)))^(10)

Find the middle term in the expansion of: (1+3x+3x^(2)+x^(3))^(2n)

In the expansion of (1/2 + 2x/3)^n when x=-1/2 ,it is known that 3^(rd) term is the greatest term Find the possible integral values of n .

If only the 4^("th") term in the expansion of (2+(3pi)/(8))^(10) has the greatest numerical value, then the integral values of x are

If x^(200) lt 3^(300) , then the greatest possible integral value of x.

If in the expansion of (x^(3)-(2)/(sqrt(x)))^(n) a term like x^(2) exists and 'n' is a double digit number, then least value of 'n' is

CENGAGE-BINOMIAL THEOREM-Single correct Answer
  1. The middle term in the expansion of (1-3x+3x^2-x^3)^(2n) is

    Text Solution

    |

  2. The algebraically second largest term in the expansion of (3-2x)^(15) ...

    Text Solution

    |

  3. If 6^(th) term in the expansion of ((3)/(2)+(x)/(3))^(n) is numericall...

    Text Solution

    |

  4. Let (5 + 2sqrt6)^n= p+ f, where n in N and p in N and 0ltflt1, then th...

    Text Solution

    |

  5. The sum of last 3 digits of 3^100 is

    Text Solution

    |

  6. The remainder when 27^(10)+7^(51) is divided by 10

    Text Solution

    |

  7. Consider the sequence ('^(n)C(0))/(1.2.3),("^(n)C(1))/(2.3.4),('^(n)C(...

    Text Solution

    |

  8. If P(n) denotes the product of all the coefficients of (1+x)^(n) and 9...

    Text Solution

    |

  9. If N is a prime number which divides S=^(39)P(19)+^(38)P(19)+^(37)P(19...

    Text Solution

    |

  10. If sum(r=0)^(n){("^(n)C(r-1))/('^(n)C(r )+^(n)C(r-1))}^(3)=(25)/(24), ...

    Text Solution

    |

  11. If a,b,c,d be four consecutive coefficients in the binomial expansion ...

    Text Solution

    |

  12. ("^(m)C(0)+^(m)C(1)-^(m)C(2)-^(m)C(3))+('^(m)C(4)+^(m)C(5)-^(m)C(6)-^(...

    Text Solution

    |

  13. The value of sum(r=0)^(3n-1)(-1)^r 6nC(2r+1)3^r is

    Text Solution

    |

  14. The coefficient of x^(50) in (x+^(101)C(0))(x+^(101)C(1)).....(x+^(101...

    Text Solution

    |

  15. In the expansion of (1+x)^(70), the sum of coefficients of odd powers ...

    Text Solution

    |

  16. The sum of all the coefficients of the terms in the expansion of (x+y+...

    Text Solution

    |

  17. The value of "^(12)C(2)+^(13)C(3)+^(14)C(4)+...+^(999)C(989) is

    Text Solution

    |

  18. If (1 +x+x^2)^25 = a0 + a1x+ a2x^2 +..... + a50.x^50 then a0 + a2 + ...

    Text Solution

    |

  19. If the sum of the coefficients in the expansion of (q+r)^(20)(1+(p-2)x...

    Text Solution

    |

  20. The sum S(n)=sum(k=0)^(n)(-1)^(k)*^(3n)C(k), where n=1,2,…. is

    Text Solution

    |