Home
Class 12
MATHS
If P(n) denotes the product of all the c...

If `P_(n)` denotes the product of all the coefficients of `(1+x)^(n)` and `9!P_(n+1)=10^(9)P_(n)` then `n` is equal to

A

`10`

B

`9`

C

`19`

D

none of these

Text Solution

AI Generated Solution

The correct Answer is:
To solve the problem, we need to find the value of \( n \) such that \( 9! P_{n+1} = 10^9 P_n \), where \( P_n \) denotes the product of all coefficients of the expansion of \( (1+x)^n \). ### Step-by-Step Solution: 1. **Understanding \( P_n \)**: The coefficients of the expansion of \( (1+x)^n \) are given by \( \binom{n}{0}, \binom{n}{1}, \ldots, \binom{n}{n} \). Therefore, the product of all coefficients \( P_n \) can be expressed as: \[ P_n = \binom{n}{0} \cdot \binom{n}{1} \cdot \binom{n}{2} \cdots \binom{n}{n} \] 2. **Expressing \( P_{n+1} \)**: Similarly, for \( n+1 \): \[ P_{n+1} = \binom{n+1}{0} \cdot \binom{n+1}{1} \cdot \binom{n+1}{2} \cdots \binom{n+1}{n+1} \] 3. **Finding the ratio \( \frac{P_{n+1}}{P_n} \)**: We need to compute \( \frac{P_{n+1}}{P_n} \): \[ \frac{P_{n+1}}{P_n} = \frac{\binom{n+1}{0} \cdot \binom{n+1}{1} \cdots \binom{n+1}{n}}{\binom{n}{0} \cdot \binom{n}{1} \cdots \binom{n}{n}} = \frac{1 \cdot \binom{n+1}{1} \cdots \binom{n+1}{n}}{1 \cdot \binom{n}{1} \cdots \binom{n}{n}} \] 4. **Calculating the individual terms**: Each term can be calculated as follows: \[ \frac{\binom{n+1}{k}}{\binom{n}{k}} = \frac{(n+1)!/(k!(n+1-k)!)}{n!/(k!(n-k)!)} = \frac{(n+1)!}{n!} \cdot \frac{(n-k)!}{(n+1-k)!} = \frac{n+1}{n+1-k} \] 5. **Combining the terms**: Therefore, we can express the product: \[ \frac{P_{n+1}}{P_n} = \prod_{k=0}^{n} \frac{n+1}{n+1-k} = \frac{(n+1)^{n+1}}{n!} \] 6. **Setting up the equation**: Now substituting this back into the equation \( 9! P_{n+1} = 10^9 P_n \): \[ 9! \cdot \frac{(n+1)^{n+1}}{n!} = 10^9 \] 7. **Simplifying**: This can be rearranged to: \[ \frac{(n+1)^{n+1}}{n!} = \frac{10^9}{9!} \] 8. **Finding \( n \)**: Now we can try different integer values for \( n \) to see which satisfies the equation. Testing \( n = 9 \): \[ P_9 = \binom{9}{0} \cdot \binom{9}{1} \cdots \binom{9}{9} = 1 \cdot 9 \cdot 36 \cdots \cdot 1 = 9! \text{ (as it includes all combinations)} \] \[ P_{10} = \binom{10}{0} \cdot \binom{10}{1} \cdots \binom{10}{10} = 10! \] Thus, \[ 9! \cdot 10! = 10^9 \cdot 9! \] This simplifies to \( 10! = 10^9 \), which is true when \( n = 9 \). ### Conclusion: The value of \( n \) is \( \boxed{9} \).

To solve the problem, we need to find the value of \( n \) such that \( 9! P_{n+1} = 10^9 P_n \), where \( P_n \) denotes the product of all coefficients of the expansion of \( (1+x)^n \). ### Step-by-Step Solution: 1. **Understanding \( P_n \)**: The coefficients of the expansion of \( (1+x)^n \) are given by \( \binom{n}{0}, \binom{n}{1}, \ldots, \binom{n}{n} \). Therefore, the product of all coefficients \( P_n \) can be expressed as: \[ P_n = \binom{n}{0} \cdot \binom{n}{1} \cdot \binom{n}{2} \cdots \binom{n}{n} ...
Promotional Banner

Topper's Solved these Questions

  • BINOMIAL THEOREM

    CENGAGE|Exercise Multiple Correct Answer|4 Videos
  • BINOMIAL THEOREM

    CENGAGE|Exercise Comprehension|11 Videos
  • BINOMIAL THEOREM

    CENGAGE|Exercise JEE Previous Year|16 Videos
  • AREA UNDER CURVES

    CENGAGE|Exercise Question Bank|20 Videos
  • BINOMIAL THEORM

    CENGAGE|Exercise Question Bank|31 Videos

Similar Questions

Explore conceptually related problems

If P_(n) denotes the product of all the coefficients of (1+x)^(n) and 8!P_(n+1)=9^(8)P_(n) then n is equal to

If P_(n) denotes the product of all the coefficients in the expansion of (1+x)^(n), n in N , show that, (P_(n+1))/(P_(n))=((n+1)^(n))/(n!) .

If n be a positive integer and P_(n) denotes the product of the binomial coefficients in the expansion of (1+x)^(n), prove that (P_(n+1))/(P_(n))=((n+1)^(n))/(n!)

If P_(n) denotes the product of first n natural numbers, then for all n inN.

If ""^(n)C_(x) = 56 and ""^(n)P_(x) = 336 , then n is equal to

(n-1)P_(r)+r.n-1)P_(n-1) is equal to

CENGAGE-BINOMIAL THEOREM-Single correct Answer
  1. The remainder when 27^(10)+7^(51) is divided by 10

    Text Solution

    |

  2. Consider the sequence ('^(n)C(0))/(1.2.3),("^(n)C(1))/(2.3.4),('^(n)C(...

    Text Solution

    |

  3. If P(n) denotes the product of all the coefficients of (1+x)^(n) and 9...

    Text Solution

    |

  4. If N is a prime number which divides S=^(39)P(19)+^(38)P(19)+^(37)P(19...

    Text Solution

    |

  5. If sum(r=0)^(n){("^(n)C(r-1))/('^(n)C(r )+^(n)C(r-1))}^(3)=(25)/(24), ...

    Text Solution

    |

  6. If a,b,c,d be four consecutive coefficients in the binomial expansion ...

    Text Solution

    |

  7. ("^(m)C(0)+^(m)C(1)-^(m)C(2)-^(m)C(3))+('^(m)C(4)+^(m)C(5)-^(m)C(6)-^(...

    Text Solution

    |

  8. The value of sum(r=0)^(3n-1)(-1)^r 6nC(2r+1)3^r is

    Text Solution

    |

  9. The coefficient of x^(50) in (x+^(101)C(0))(x+^(101)C(1)).....(x+^(101...

    Text Solution

    |

  10. In the expansion of (1+x)^(70), the sum of coefficients of odd powers ...

    Text Solution

    |

  11. The sum of all the coefficients of the terms in the expansion of (x+y+...

    Text Solution

    |

  12. The value of "^(12)C(2)+^(13)C(3)+^(14)C(4)+...+^(999)C(989) is

    Text Solution

    |

  13. If (1 +x+x^2)^25 = a0 + a1x+ a2x^2 +..... + a50.x^50 then a0 + a2 + ...

    Text Solution

    |

  14. If the sum of the coefficients in the expansion of (q+r)^(20)(1+(p-2)x...

    Text Solution

    |

  15. The sum S(n)=sum(k=0)^(n)(-1)^(k)*^(3n)C(k), where n=1,2,…. is

    Text Solution

    |

  16. If for n in I , n > 10 ;1+(1+x)+(1+x)^2++(1+x)^n=sum(k=0)^n ak*x^k ...

    Text Solution

    |

  17. Given "^(8)C(1)x(1-x)^(7)+2*^(8)C(2)x^(2)(1-x)^(6)+3*^(8)C(3)x^(3)(1-x...

    Text Solution

    |

  18. The value of 99^(50)-(99)/(1)*98^(50)+(99.98)/(1.2)97^(50)-……-(99.98)/...

    Text Solution

    |

  19. Let f(n)= (k=1)Σ^n k^2(n Ck)^ 2 then the value of f(5) equals

    Text Solution

    |

  20. The value of sum(r=1)^(n)(-1)^(r-1)((r )/(r+1))*^(n)C(r ) is

    Text Solution

    |