Home
Class 12
MATHS
Consider a G.P. with first term (1+x)^(n...

Consider a `G.P.` with first term `(1+x)^(n)`, `|x| lt 1`, common ratio `(1+x)/(2)` and number of terms `(n+1)`. Let `'S'` be sum of all the terms of the `G.P.`, then
`sum_(r=0)^(n)"^(n+r)C_(r )((1)/(2))^(r )` equals

A

`(3//4)^()`

B

`1`

C

`2^(n)`

D

`3^(n)`

Text Solution

Verified by Experts

The correct Answer is:
C

`(c )` `sum_(r=0)^(n)'^(n+r)C_(r )((1)/(2))^(r )`
`=^(n)C_(n)((1)/(2))^(0)+^(n+1)C_(n)((1)/(2))^(1)+^(n+2)C_(n)((1)/(2))^(2)+......+^(2n)C_(n)((1)/(2))^(n)`
`="coefficient of"x^(n)"in" (1+x)^(n)((1)/(2))^(0)+(1+x)^(n+1)((1)/(2))^(1)+(1+x)^(n+2)((1)/(2))^(2)+....+(1+x)^(2n)((1)/(2))^(n)`
`="coefficient of "x^(n)"in"S`
`=2^(n)`
Promotional Banner

Topper's Solved these Questions

  • BINOMIAL THEOREM

    CENGAGE|Exercise Multiple Correct Answer|4 Videos
  • AREA UNDER CURVES

    CENGAGE|Exercise Question Bank|20 Videos
  • BINOMIAL THEORM

    CENGAGE|Exercise Question Bank|31 Videos

Similar Questions

Explore conceptually related problems

If n in N, then sum_(r=0)^(n) (-1)^(r) (""^(n)C_(r))/(""^(r+2)C_(r)) is equal to .

The value of sum_(r=1)^(n)(sum_(p=0)^(n)nC_(r)^(r)C_(p)2^(p)) is equal to

If |r|<1, then the sum of infinite terms of G.P is

Let for n in N, f(n)=sum_(r=0)^(n)(-1)^(r)(C_(r)2^(r+1))/((r+1)(r+2))

sum_(r=1)^(n) r^(2)-sum_(r=1)^(n) sum_(r=1)^(n) is equal to

If sum_(r=1)^(n)cos^(-1)x_(r)=0, then sum_(r=1)^(n)x_(r) equals to