Home
Class 7
MATHS
If 3^x=900 ,then find 3^(x+2) and 3^(x-2...

If `3^x=900` ,then find `3^(x+2)` and `3^(x-2)`.

Text Solution

AI Generated Solution

The correct Answer is:
To solve the problem, we need to find the values of \(3^{(x+2)}\) and \(3^{(x-2)}\) given that \(3^x = 900\). ### Step-by-Step Solution: 1. **Start with the given equation:** \[ 3^x = 900 \] 2. **Find \(3^{(x+2)}\):** - We can express \(3^{(x+2)}\) using the property of exponents: \[ 3^{(x+2)} = 3^x \cdot 3^2 \] - Substitute \(3^x\) with 900: \[ 3^{(x+2)} = 900 \cdot 3^2 \] - Calculate \(3^2\): \[ 3^2 = 9 \] - Now substitute back: \[ 3^{(x+2)} = 900 \cdot 9 \] - Perform the multiplication: \[ 3^{(x+2)} = 8100 \] 3. **Find \(3^{(x-2)}\):** - Similarly, we can express \(3^{(x-2)}\): \[ 3^{(x-2)} = \frac{3^x}{3^2} \] - Substitute \(3^x\) with 900: \[ 3^{(x-2)} = \frac{900}{3^2} \] - Again, calculate \(3^2\): \[ 3^{(x-2)} = \frac{900}{9} \] - Perform the division: \[ 3^{(x-2)} = 100 \] ### Final Results: - \(3^{(x+2)} = 8100\) - \(3^{(x-2)} = 100\)

To solve the problem, we need to find the values of \(3^{(x+2)}\) and \(3^{(x-2)}\) given that \(3^x = 900\). ### Step-by-Step Solution: 1. **Start with the given equation:** \[ 3^x = 900 \] ...
Promotional Banner

Topper's Solved these Questions

  • INDICES

    PEARSON IIT JEE FOUNDATION|Exercise Concept Application Level-1|22 Videos
  • INDICES

    PEARSON IIT JEE FOUNDATION|Exercise Level -2|22 Videos
  • INDICES

    PEARSON IIT JEE FOUNDATION|Exercise Short answer type questions|20 Videos
  • GEOMETRY

    PEARSON IIT JEE FOUNDATION|Exercise Test-2|12 Videos
  • MENSURATION

    PEARSON IIT JEE FOUNDATION|Exercise ASSESSMENT TESTS (Test - 1) |23 Videos

Similar Questions

Explore conceptually related problems

If 3^(3)=900, then find the value of 3^(x+2)3^(x-2)

If (x-2/x)=6 then find (x^3-8/x^3)=

If x^(2)+3x+1=0 then find x^(3)+(1)/(x^(3)),x^(4)+(1)/(x^(4)),x^(2)-(1)/(x^(2)),x^(2)+(1)/(x^(2))

(b) Find the HCF of 51x^(2) (x + 3)^(3) (x -2)^(2) and 34 x(x -1)^(5) (x -2)^(3)

If 3x=cosectheta and (3)/(x)=cottheta , find the value of 3(x^(2)-(1)/(x^(2))) .