Home
Class 7
MATHS
((27)/(343))^(2/3)xx((343)/(729))^(2/3)d...

`((27)/(343))^(2/3)xx((343)/(729))^(2/3)div((2401)/(81))^(3/4)`= _____

A

`1//3xx(7//3)^8`

B

`1//9xx(7//3)^7`

C

`1//9xx(7//3)^6`

D

`(7//3)^(6)`

Text Solution

AI Generated Solution

The correct Answer is:
To solve the expression \(\left(\frac{27}{343}\right)^{\frac{2}{3}} \times \left(\frac{343}{729}\right)^{\frac{2}{3}} \div \left(\frac{2401}{81}\right)^{\frac{3}{4}}\), we will simplify it step by step. ### Step 1: Rewrite the numbers in terms of their bases We know that: - \(27 = 3^3\) - \(343 = 7^3\) - \(729 = 3^6\) - \(2401 = 7^4\) - \(81 = 3^4\) So we can rewrite the expression as: \[ \left(\frac{3^3}{7^3}\right)^{\frac{2}{3}} \times \left(\frac{7^3}{3^6}\right)^{\frac{2}{3}} \div \left(\frac{7^4}{3^4}\right)^{\frac{3}{4}} \] ### Step 2: Apply the power of a quotient rule Using the property \(\left(\frac{a}{b}\right)^m = \frac{a^m}{b^m}\), we can simplify each term: \[ \frac{(3^3)^{\frac{2}{3}}}{(7^3)^{\frac{2}{3}}} \times \frac{(7^3)^{\frac{2}{3}}}{(3^6)^{\frac{2}{3}}} \div \frac{(7^4)^{\frac{3}{4}}}{(3^4)^{\frac{3}{4}}} \] ### Step 3: Simplify the powers Calculating the powers: \[ \frac{3^{3 \cdot \frac{2}{3}}}{7^{3 \cdot \frac{2}{3}}} \times \frac{7^{3 \cdot \frac{2}{3}}}{3^{6 \cdot \frac{2}{3}}} \div \frac{7^{4 \cdot \frac{3}{4}}}{3^{4 \cdot \frac{3}{4}}} \] This simplifies to: \[ \frac{3^2}{7^2} \times \frac{7^2}{3^4} \div \frac{7^3}{3^3} \] ### Step 4: Combine the fractions Now we can combine the fractions: \[ \frac{3^2 \cdot 7^2}{7^2 \cdot 3^4} \div \frac{7^3}{3^3} \] This simplifies to: \[ \frac{3^2}{3^4} = \frac{1}{3^2} = \frac{1}{9} \] And for the division: \[ \div \frac{7^3}{3^3} = \times \frac{3^3}{7^3} \] So we have: \[ \frac{1}{9} \times \frac{3^3}{7^3} = \frac{3^3}{9 \cdot 7^3} \] ### Step 5: Simplify further Since \(9 = 3^2\), we can write: \[ \frac{3^3}{3^2 \cdot 7^3} = \frac{3^{3-2}}{7^3} = \frac{3^1}{7^3} = \frac{3}{343} \] ### Final Answer Thus, the final answer is: \[ \frac{3}{343} \]

To solve the expression \(\left(\frac{27}{343}\right)^{\frac{2}{3}} \times \left(\frac{343}{729}\right)^{\frac{2}{3}} \div \left(\frac{2401}{81}\right)^{\frac{3}{4}}\), we will simplify it step by step. ### Step 1: Rewrite the numbers in terms of their bases We know that: - \(27 = 3^3\) - \(343 = 7^3\) - \(729 = 3^6\) - \(2401 = 7^4\) ...
Promotional Banner

Topper's Solved these Questions

  • INDICES

    PEARSON IIT JEE FOUNDATION|Exercise Assessment test Test -1|11 Videos
  • INDICES

    PEARSON IIT JEE FOUNDATION|Exercise Assessment test Test -2|1 Videos
  • INDICES

    PEARSON IIT JEE FOUNDATION|Exercise Level -2|22 Videos
  • GEOMETRY

    PEARSON IIT JEE FOUNDATION|Exercise Test-2|12 Videos
  • MENSURATION

    PEARSON IIT JEE FOUNDATION|Exercise ASSESSMENT TESTS (Test - 1) |23 Videos

Similar Questions

Explore conceptually related problems

((1)/(343))^(-(2)/(3))

root3((-343)/(729))=?

(1) (4)/((216)^((2)/(3)))+(1)/((256)^((3)/(4)))+(2)/((243)^((1)/(5))) (ii) ((64)/(125))^((2)/(3))+((256)/(625))^((1)/(4))+((3)/(7))^(0) (iii) ((81)/(16))^((3)/(4))(((25)/(9))^((3)/(2))-:((5)/(2))^(-3)) (iv) ((25)^((5)/(2))times(729)^((1)/(3)))/((125)^((2)/(3))times(27)^((2)/(3))times8^((4)/(3)))

(0.49)^(4)xx(0.343)^(4) div (0.2401)^(4)=(70div100)^(?+3)

(49)^(2)xx (7)^(8)div (343)^(3)=(7)^(?)

(7)/((343)^(-(2)/(3)))+(1)/((216)^(-(2)/(3)))+(3)/((625)^(-(1)/(4)))

((64)/(27))^((2)/(3))times((9)/(16))^((3)/(2))times((81)/(256))^((3)/(4))=((3)/(4))^(x) then x=

{(441)^(1//2)xx207xx(343)^(1//3)}div{(14)^(2)xx(529)^(1//2)}

PEARSON IIT JEE FOUNDATION-INDICES -Level -3
  1. If sqrt(2)=1.414 and sqrt(7)=2.646, then find the value of sqrt(32)+sq...

    Text Solution

    |

  2. If 64 gt x^3, then the greatest possible integer value of x is

    Text Solution

    |

  3. Which of the folowing is the ascending order of 2^(1152), 3^(768), and...

    Text Solution

    |

  4. If 2^(a)=4^(b)=8^(c)=64,then which of the following relations hod true...

    Text Solution

    |

  5. If sqrt(2.5)=1.581,then find the value of sqrt(0.625).

    Text Solution

    |

  6. ((27)/(343))^(2/3)xx((343)/(729))^(2/3)div((2401)/(81))^(3/4)=

    Text Solution

    |

  7. If (9)^(2x+4)=(243)^(2x-3.2) , then x =

    Text Solution

    |

  8. If 2^(2n-3)=2048 , then (4n+3n^2)= .

    Text Solution

    |

  9. If 7^(a^(b))=2401 where a and b positive integers and a ne 1, then whi...

    Text Solution

    |

  10. IF (a^b)^c=729, then find the minimum possible value of a+b+c (where a...

    Text Solution

    |

  11. If (2)^(2x-2)-(8)^(y-1)=(16)^(x-2.5), then find the sum of x and y.

    Text Solution

    |

  12. (sqrt(1795)-sqrt(1170))^(3//4)xx(sqrt(1795)+sqrt(1170))^(3//4)=

    Text Solution

    |

  13. If a=(3^(-3)-3^(3)), and b=(3^3-3^(-3)) , then find the value of (a)/...

    Text Solution

    |

  14. Which of the following is the descending order of (4)^26,(64)^9, and (...

    Text Solution

    |

  15. ((x^(5y-3)xx x^(3-2y))/(x^(4y-6)xx x^(2y-9)))^(-4/3)=

    Text Solution

    |

  16. If (xy)^a=z,(yz)^a=x, and (xz)^a=y, then what is the value of a? (None...

    Text Solution

    |

  17. (x^(-1)-y^(-1))/(z)+(y^(-1)-z^(-1))/(x)+(z^(-1)-x^(-1))/(y)=

    Text Solution

    |

  18. Find the value of (1)/(1+x^(a-b))+(1)/(1+x^(b-a))

    Text Solution

    |

  19. If x^5lt 1000 , then find the greater integer value of x.

    Text Solution

    |

  20. If x^(y)=y^(x) where x and y are distinct natural numbers , then find ...

    Text Solution

    |