Home
Class 11
MATHS
Let A={{1,2,3},(4,5},(6,7,8}} . Determin...

Let A={{1,2,3},(4,5},(6,7,8}} . Determine which of the following is true or false . Justify your answer.
(i) `phiinA`
(ii) `phisubA`
(iii) `1 inA`
(iv) `{1,2,3}subA`
(v) `{6,7,8} inA`
(vi) `{{4,5}}subA`.

Text Solution

AI Generated Solution

The correct Answer is:
To solve the problem, we need to analyze each statement regarding the set \( A = \{ \{1, 2, 3\}, \{4, 5\}, \{6, 7, 8\} \} \) and determine whether they are true or false. ### Step-by-Step Solution: 1. **Statement (i): \( \phi \in A \)** - **Analysis**: The symbol \( \phi \) represents the empty set. The set \( A \) contains three elements: \( \{1, 2, 3\} \), \( \{4, 5\} \), and \( \{6, 7, 8\} \). None of these elements is the empty set. - **Conclusion**: This statement is **False**. 2. **Statement (ii): \( \phi \subset A \)** - **Analysis**: The empty set \( \phi \) is a subset of every set, including \( A \). - **Conclusion**: This statement is **True**. 3. **Statement (iii): \( 1 \in A \)** - **Analysis**: The number \( 1 \) is not an element of \( A \). The elements of \( A \) are the sets \( \{1, 2, 3\} \), \( \{4, 5\} \), and \( \{6, 7, 8\} \), not the individual numbers. - **Conclusion**: This statement is **False**. 4. **Statement (iv): \( \{1, 2, 3\} \subset A \)** - **Analysis**: The set \( \{1, 2, 3\} \) is an element of \( A \), but it is not a subset of \( A \). A subset would require every element of \( \{1, 2, 3\} \) to be an element of \( A \), which is not the case. - **Conclusion**: This statement is **False**. 5. **Statement (v): \( \{6, 7, 8\} \in A \)** - **Analysis**: The set \( \{6, 7, 8\} \) is indeed one of the elements of \( A \). - **Conclusion**: This statement is **True**. 6. **Statement (vi): \( \{\{4, 5\}\} \subset A \)** - **Analysis**: The set \( \{4, 5\} \) is an element of \( A \), and therefore, the set containing \( \{4, 5\} \) as an element, i.e., \( \{\{4, 5\}\} \), is a subset of \( A \). - **Conclusion**: This statement is **True**. ### Final Results: - (i) False - (ii) True - (iii) False - (iv) False - (v) True - (vi) True
Promotional Banner

Topper's Solved these Questions

  • SETS

    MODERN PUBLICATION|Exercise EXERCISE 1 (d) (Short Answer Type Questions)|13 Videos
  • SETS

    MODERN PUBLICATION|Exercise EXERCISE 1 (e ) (Short Answer Type Questions)|7 Videos
  • SETS

    MODERN PUBLICATION|Exercise EXERCISE 1 (b) (Short Answer Type Questions)|7 Videos
  • SEQUENCES AND SERIES

    MODERN PUBLICATION|Exercise CHAPTER TEST|12 Videos
  • STATISTICS

    MODERN PUBLICATION|Exercise Chapter Test|7 Videos

Similar Questions

Explore conceptually related problems

Let A={{1,2,3},{4,5},{6,7,8}} Determine which of the following is true or false: 1in A{1,2,3}sub A{6,7,8}in A

Let A={{1,2,3},{4,5},{6,7,8}} Determine which of the following is true or false: {{4,5}}sub A varphi A varphi sub A

Let A= {{1,2,3},{4,5},{6,7,8}}. Determine which of the following is true or false : (i) 1inA {1,2,3}subA (iii) {6,7,8}inA (iv) {{4,5}}subA (v) phiinA (vi) phisubA .

If set A={1,2,3,4,5} and set B={1,7,6,8} then which of the following is not true?

Let A={phi,{phi},2,{2,phi,5}} . Which of the following are true or false Justify your answer. (i) phi inA (ii) {phi}inA (iii) {2}inA (iv) {5,phi}subA (v) 5subA (vi) {5,{2}}notinA (vii) {{5},{2}}notinA (viii) {phi,(phi},(2,phi}}subA (ix) {{phi}}subA .

Let A ={1,2,{3,4},5} . Which of the following statements are incorrect and why ? (i) {3,4} subA (ii) {3,4} in A (iii) {{3,4}}sub A (iv) 1 in A (v) 1 sub A (vi) {1,2,5} sub A (vii) {1,2,5} in A (viii) {1,2,3} sub A (ix) phi in A (x) phi sub A (xi) {phi} sub A .

Let A= {1,2,{3,4},5}. Which of the following statements are correct and why ? (i) {3,4}subA (ii) {3,4}inA (iii) {{3,4}}subA (iv) 1inA (v) 1subA (vi) {1,2}subA . (vii) {1,2,5}inA (viii) {1,2,3}subA . (ix) phiinA (x) phisubA (xi) {phi}subA .

Let A= {1, 2, {3, 4}, 5} . Which of the following statements are incorrect and why?(i) {3, 4}sub A (ii) {3, 4} in A (iii) {{3, 4}} subA (iv) 1 in A (v) 1 subA (vi) {1,2, 5}subA (vi) {1, 2, 5} ⊂ A (vii) {1, 2, 5} ∈ A (viii) {1, 2, 3} ⊂ A (ix) φ ∈ A (x) φ ⊂ A (xi) {φ} ⊂ A

Let A= {{1,2,3},{4,5} , {6,7,8,9}} . (i) {1,2,3} subA (ii) {{4,5}} subA .

If A={1,2,3,4,5,6} , then {1,2}inA . (True or False)