Home
Class 11
MATHS
Let A={phi,{phi},2,{2,phi,5}}. Which of...

Let `A={phi,{phi},2,{2,phi,5}}`. Which of the following are true or false Justify your answer.
(i) `phi inA`
(ii) `{phi}inA`
(iii) `{2}inA`
(iv) `{5,phi}subA`
(v) `5subA`
(vi) `{5,{2}}notinA`
(vii) `{{5},{2}}notinA`
(viii) `{phi,(phi},(2,phi}}subA`
(ix) `{{phi}}subA`.

Text Solution

AI Generated Solution

The correct Answer is:
To solve the question, we will analyze each statement regarding the set \( A = \{\phi, \{\phi\}, 2, \{2, \phi, 5\}\} \) and determine whether they are true or false, providing justification for each. ### Step-by-Step Solution: 1. **Statement (i): \( \phi \in A \)** - **Justification**: The symbol \( \phi \) (the empty set) is one of the elements of set \( A \). - **Conclusion**: True. 2. **Statement (ii): \( \{\phi\} \in A \)** - **Justification**: The set \( \{\phi\} \) is explicitly listed as one of the elements of set \( A \). - **Conclusion**: True. 3. **Statement (iii): \( \{2\} \in A \)** - **Justification**: The set \( \{2\} \) is not an element of \( A \); \( A \) contains the number 2, but not as a set. - **Conclusion**: False. 4. **Statement (iv): \( \{5, \phi\} \subset A \)** - **Justification**: The set \( \{5, \phi\} \) is not a subset of \( A \) because 5 is not an element of \( A \). - **Conclusion**: False. 5. **Statement (v): \( 5 \subset A \)** - **Justification**: The number 5 is not an element of \( A \), and thus cannot be a subset. - **Conclusion**: False. 6. **Statement (vi): \( \{5, \{2\}\} \notin A \)** - **Justification**: The set \( \{5, \{2\}\} \) is not an element of \( A \) since neither 5 nor \( \{2\} \) is in \( A \). - **Conclusion**: True. 7. **Statement (vii): \( \{\{5\}, \{2\}\} \notin A \)** - **Justification**: The set \( \{\{5\}, \{2\}\} \) is not an element of \( A \) because neither \( \{5\} \) nor \( \{2\} \) is in \( A \). - **Conclusion**: True. 8. **Statement (viii): \( \{\phi, \{\phi\}, \{2, \phi\}\} \subset A \)** - **Justification**: The set \( \{\phi, \{\phi\}, \{2, \phi\}\} \) is not a subset of \( A \) because \( \{2, \phi\} \) is not an element of \( A \). - **Conclusion**: False. 9. **Statement (ix): \( \{\{\phi\}\} \subset A \)** - **Justification**: The set \( \{\{\phi\}\} \) is a subset of \( A \) because \( \{\phi\} \) is an element of \( A \). - **Conclusion**: True. ### Final Answers: - (i) True - (ii) True - (iii) False - (iv) False - (v) False - (vi) True - (vii) True - (viii) False - (ix) True
Promotional Banner

Topper's Solved these Questions

  • SETS

    MODERN PUBLICATION|Exercise EXERCISE 1 (d) (Short Answer Type Questions)|13 Videos
  • SETS

    MODERN PUBLICATION|Exercise EXERCISE 1 (e ) (Short Answer Type Questions)|7 Videos
  • SETS

    MODERN PUBLICATION|Exercise EXERCISE 1 (b) (Short Answer Type Questions)|7 Videos
  • SEQUENCES AND SERIES

    MODERN PUBLICATION|Exercise CHAPTER TEST|12 Videos
  • STATISTICS

    MODERN PUBLICATION|Exercise Chapter Test|7 Videos

Similar Questions

Explore conceptually related problems

Let A={phi{phi},1,{1,phi},2}. Determine which of the following is true or fase.

Let A={{1,2,3},(4,5},(6,7,8}} . Determine which of the following is true or false . Justify your answer. (i) phiinA (ii) phisubA (iii) 1 inA (iv) {1,2,3}subA (v) {6,7,8} inA (vi) {{4,5}}subA .

Let A= {{1,2,3},{4,5},{6,7,8}}. Determine which of the following is true or false : (i) 1inA {1,2,3}subA (iii) {6,7,8}inA (iv) {{4,5}}subA (v) phiinA (vi) phisubA .

Let A={phi,{phi},2,{2,phi},3}, which of the following are true ? {:((i),phiinA,(i),phisubA,(iii),{phi}inA),((iv),{phi}subA,(v),2subA,(vi),{2","phi}subA),((vii),{{2}","{3}} subA,(viii),{2","3}!inA, (ix),{phi","2","3}subA.):}

Let A= {1,2,{3,4},5}. Which of the following statements are correct and why ? (i) {3,4}subA (ii) {3,4}inA (iii) {{3,4}}subA (iv) 1inA (v) 1subA (vi) {1,2}subA . (vii) {1,2,5}inA (viii) {1,2,3}subA . (ix) phiinA (x) phisubA (xi) {phi}subA .

Let A ={1,2,{3,4},5} . Which of the following statements are incorrect and why ? (i) {3,4} subA (ii) {3,4} in A (iii) {{3,4}}sub A (iv) 1 in A (v) 1 sub A (vi) {1,2,5} sub A (vii) {1,2,5} in A (viii) {1,2,3} sub A (ix) phi in A (x) phi sub A (xi) {phi} sub A .

If A= {3,{4,5},6} , find which of the following statements are true. (i) {4,5}subeA (ii) {4,5} in A (iii) {{4,5 }}sube A (iv) 4 in A (v) {3}sube A (vi) {phi}sube A (vii) phi sube A (viii) {3,4,5} sube A (ix) {3,6} sube A

Examine whether the following statement is true or false: phi sube phi( i ) phi sube phi (ii)0in phi (iii) phi={0} (v) {{1},{2},3}={1,{2},3} (vi) {a}in{a,{a},{{a}}}={1,{2},3}

If A sub U , prove that : (i) U' =phi (ii) phi' =U (iii) (A')' =A (iv) A cup A' =U (v) A cap A' =phi

int(2sin2 phi-cos phi)/(6-cos^(2)phi-4sin phi)d phi