Home
Class 11
MATHS
Prove that : (i) A^(c) - B^(c)=B-A ...

Prove that :
(i) `A^(c) - B^(c)=B-A`
(ii) `B^(c)-A^(c)=A-B`.

Promotional Banner

Topper's Solved these Questions

  • SETS

    MODERN PUBLICATION|Exercise EXERCISE 1 (e ) (Long Answer Type Questions - I)|13 Videos
  • SETS

    MODERN PUBLICATION|Exercise EXERCISE 1 (e ) (Long Answer Type Questions - II)|3 Videos
  • SETS

    MODERN PUBLICATION|Exercise EXERCISE 1 (d) (Short Answer Type Questions)|13 Videos
  • SEQUENCES AND SERIES

    MODERN PUBLICATION|Exercise CHAPTER TEST|12 Videos
  • STATISTICS

    MODERN PUBLICATION|Exercise Chapter Test|7 Videos

Similar Questions

Explore conceptually related problems

Prove that A^(c)-B^(c)=B-A .

For any 3 sets A, B and C, prove that : (i) A-(B cupC)=(A-B)cap(A-C) (ii) A-(BcapC)=(A-B)cup(A-C) (iii) A cap(B-C)= (A cap B) - (A cap C) (iv) (A cupB)-C=(A-C)cup(B-C) (v) A cap (B DeltaC)=(A capB)Delta(A capC) .

If A is a symmetric matrix, B is a skew-symmetric matrix, A+B is nonsingular and C=(A+B)^(-1) (A-B) , then prove that (i) C^(T) (A+B) C=A+B (ii) C^(T) (A-B)C=A-B (iii) C^(T)AC=A

If A is a symmetric and B skew symmetric matrix and (A+B) si non-singular and C=(A+B)^(-1)(A-B) , then prove that. (i) C^(T)(A+B)C=A+B (ii) C^(T)(A-B)C=A-B

Prove the following : (i) B-A=BcapA^(c) (ii) (AuuB)-A=B-A .

If A = {a,b,c,d,e }, B= {a,c,e, g} and C = {b,e, f,g} verify that : (i) A cap (B-C) =(A cap B) -(A cap C) (ii) A- (Bcap C) =(A-B)cup (A-C)

Prove that : |{:(1,b,c),(b,c,a),(c,a,b):}|=3 a b c-a^(3)-b^(3)-c^(3)

(i) a , b, c are in H.P. , show that (b + a)/(b -a) + (b + c)/(b - c) = 2 (ii) If a^(2), b^(2), c^(2) are A.P. then b + c , c + a , a + b are in H.P. .

ABCD is a quadrilateral in which and /_D A B\ =/_C B A (see Fig. 7.17). Prove that (i) DeltaA B D~=DeltaB A C (ii) B D\ =\ A C (iii) /_A B D\ =/_B A C

If a,b,c and d are any four consecutive coefficients in the expansion of (1 + x)^(n) , then prove that (i) (a) /(a+ b) + (c)/(b+c) = (2b)/(b+c) (ii) ((b)/(b+c))^(2) gt (ac)/((a + b)(c + d)), "if " x gt 0 .