Home
Class 11
MATHS
Find the parametric representation of ci...

Find the parametric representation of circles :
(i) `x^(2) + y^(2) + 12x - 4y - 1 = 0`
(ii) `x^(2) + y^(2) + 2gx + 2fy + c = 0 `.

Text Solution

AI Generated Solution

The correct Answer is:
To find the parametric representation of the given circles, we will follow a systematic approach for both parts of the question. ### Part (i): Given Circle Equation **Equation:** \[ x^2 + y^2 + 12x - 4y - 1 = 0 \] **Step 1: Rearranging the Equation** We need to rearrange the equation to the standard form of a circle, which is: \[ (x - h)^2 + (y - k)^2 = r^2 \] **Step 2: Completing the Square for x and y** 1. For \(x\): - The terms involving \(x\) are \(x^2 + 12x\). - To complete the square: \[ x^2 + 12x = (x + 6)^2 - 36 \] 2. For \(y\): - The terms involving \(y\) are \(y^2 - 4y\). - To complete the square: \[ y^2 - 4y = (y - 2)^2 - 4 \] **Step 3: Substitute Back into the Equation** Substituting the completed squares back into the equation: \[ (x + 6)^2 - 36 + (y - 2)^2 - 4 - 1 = 0 \] This simplifies to: \[ (x + 6)^2 + (y - 2)^2 - 41 = 0 \] Thus: \[ (x + 6)^2 + (y - 2)^2 = 41 \] **Step 4: Identify the Center and Radius** From the equation \((x + 6)^2 + (y - 2)^2 = 41\): - Center \((h, k) = (-6, 2)\) - Radius \(r = \sqrt{41}\) **Step 5: Write the Parametric Equations** The parametric equations for the circle are: \[ x = h + r \cos \theta = -6 + \sqrt{41} \cos \theta \] \[ y = k + r \sin \theta = 2 + \sqrt{41} \sin \theta \] ### Part (ii): General Circle Equation **Equation:** \[ x^2 + y^2 + 2gx + 2fy + c = 0 \] **Step 1: Rearranging the Equation** Rearranging to the standard form: \[ x^2 + 2gx + y^2 + 2fy + c = 0 \] **Step 2: Completing the Square** 1. For \(x\): - \(x^2 + 2gx = (x + g)^2 - g^2\) 2. For \(y\): - \(y^2 + 2fy = (y + f)^2 - f^2\) **Step 3: Substitute Back into the Equation** Substituting back gives: \[ (x + g)^2 - g^2 + (y + f)^2 - f^2 + c = 0 \] This simplifies to: \[ (x + g)^2 + (y + f)^2 = g^2 + f^2 - c \] **Step 4: Identify the Center and Radius** From the equation \((x + g)^2 + (y + f)^2 = g^2 + f^2 - c\): - Center \((h, k) = (-g, -f)\) - Radius \(r = \sqrt{g^2 + f^2 - c}\) **Step 5: Write the Parametric Equations** The parametric equations for the circle are: \[ x = -g + \sqrt{g^2 + f^2 - c} \cos \theta \] \[ y = -f + \sqrt{g^2 + f^2 - c} \sin \theta \] ### Summary of Solutions 1. For the first circle: - \(x = -6 + \sqrt{41} \cos \theta\) - \(y = 2 + \sqrt{41} \sin \theta\) 2. For the second circle: - \(x = -g + \sqrt{g^2 + f^2 - c} \cos \theta\) - \(y = -f + \sqrt{g^2 + f^2 - c} \sin \theta\)
Promotional Banner

Topper's Solved these Questions

  • CONIC SECTIONS

    MODERN PUBLICATION|Exercise EXERCISE 11 (C) (SHORT ANSWER TYPE QUESTIONS )|7 Videos
  • CONIC SECTIONS

    MODERN PUBLICATION|Exercise EXERCISE 11 (D) (SHORT ANSWER TYPE QUESTIONS )|3 Videos
  • CONIC SECTIONS

    MODERN PUBLICATION|Exercise EXERCISE 11 (A) (LONG ANSWER TYPE QUESTIONS II )|10 Videos
  • COMPLEX NUMBERS

    MODERN PUBLICATION|Exercise CHAPTER TEST|12 Videos
  • INTRODUCTION TO THREE DIMENSIONAL GEOMETRY

    MODERN PUBLICATION|Exercise CHAPTER TEST|12 Videos

Similar Questions

Explore conceptually related problems

Find the parametric equation of the circles : (i) 2x^(2) + 2y^(2) - 5x - 7y - 3 = 0 (ii) 3x^(2) + 3y^(2) + 4x - 6y - 4 = 0 .

Find the parametric representation of the circles : (i) 3x^(2) + 3y^(2) = 4 . (ii) ( x - 2)^(2) + (y - 3)^(2) = 5 .

Find the parametric equation of the circles : x^2 + y^2 + 2x - 4y - 1 =0

Find the parametric equation of the circles : x^2 + y^2 - 2x+4y-4=0

Find the parametric equation of the circles : 3x^2 + 3y^2 + 4x-6y - 4 = 0

Find the parametric equations of that circles : 2x^2 + 2y^2 - 5x - 7y-3=0

Write the parametric equations of the circle x^(2)+y^(2)-2x-4y-4=0

The parametric coordinates of any point on the circle x^(2) + y^(2) – 4x – 4y = 0 are

The length of the tangent drawn from any point on the circle x^(2) + y^(2) + 2gx + 2fy + a =0 to the circle x^(2) + y^(2) + 2gx + 2fy + b = 0 is

(i) 12x^(2) + 11x + 2 = 0 (ii) 25y^(2) + 15y+2 = 0